ESTUDO DO VALOR PREDITIVO E PROGNÓSTICO DE MARCADORES IMUNOLÓGICOS NO LINFOMA DE HODGKIN CLÁSSICO, NO CEARÁ – BRASIL

ROGÉRIO PINTO GIESTA

Tese apresentada ao Programa de Pós-Graduação Interinstitucional (DINTER) em Oncologia da Fundação Antônio Prudente em Parceria com a Escola Cearense de Oncologia, para obtenção do título de Doutor em Ciências

Área de Concentração: Oncologia

Orientador: Dr. Victor Piana de Andrade

Co-Orientador: Prof. Dr. Ronald Feitosa Pinheiro

Fortaleza

2012

FICHA CATALOGRÁFICA

Preparada pela Biblioteca da Fundação Antônio Prudente

Giesta, Rogério Pinto

Estudo do valor preditivo e prognóstico de marcadores imunológicos no linfoma de Hodgkin clássico, no Ceará – Brasil / Rogério Pinto Giesta – Fortaleza, 2012.

143p.

Tese (Doutorado)-Fundação Antônio Prudente e Escola Cearense de Oncologia – ECO. Programa de Pós-Graduação Interinstitucional (Dinter) Curso de Pós-Graduação em Ciências - Área de concentração: Oncologia.

Orientador: Victor Piana de Andrade

Descritores: 1. LINFOMA DE HODGKIN. 2. PROGNÓSTICO. 3. MARCADORES IMUNOLÓGICOS. 4. CÉLULAS DE REED-STERNBERG. 5. IMUNOHISTOQUÍMICA. 6. ESTADO (Fortaleza)

"Vossos filhos não são vossos filhos.

São os filhos e as filhas da ânsia da vida por si mesma.

Vêm através de vós, mas não de vós.

E embora vivam convosco, não vos pertencem.

Podeis outorgar-lhes vosso amor, mas não vossos pensamentos,

Porque eles têm seus próprios pensamentos.

Podeis abrigar seus corpos, mas não suas almas;

Pois suas almas moram na mansão do amanhã,

Que vós não podeis visitar nem mesmo em sonho.

Podeis esforçar-vos por ser como eles, mas não procureis fazê-los como vós,

Porque a vida não anda para trás e não se demora com os dias passados.

Vós sois os arcos dos quais vossos filhos são arremessados como flechas vivas.

O arqueiro mira o alvo na senda do infinito e vos estica com toda a sua força

Para que suas flechas se projetem, rápidas e para longe.

Que vosso encurvamento na mão do arqueiro seja vossa alegria:

Pois assim como ele ama a flecha que voa,

Ama também o arco que permanece estável."

Gibran Khalil Gibran (1883-1931).

AGRADECIMENTOS

Ao Prof. Dr. Victor Piana de Andrade e ao Prof. Dr. Ronald Feitosa Pinheiro pelas valiosas orientações prestadas para a execução desta tese.

Ao Prof. Dr. Fernando Augusto Soares, ao Prof. Dr. Marcos Venício Alves Lima e ao Prof. Manfredo Luiz Lins e Silva pela organização e coordenação desta grandiosa parceria entre Fundação Antônio Prudente/Hospital A.C. Camargo e a Escola Cearense de Oncologia/Hospital Haroldo Juaçaba - Instituto do Câncer do Ceará.

Ao Prof. Dr. Francisco Dário Rocha Filho, ao Prof. Dr. Francisco Valdeci de Almeida Ferreira e à Dra. Acy Telles de Souza Quixadá pelas valiosas informações prestadas para a execução desta tese.

Ao Prof. Dr. Livino Pinheiro Virgílio Júnior pelo grande incentivo para meu aperfeiçoamento profissional e pela influência por sua dedicação à docência.

Ao Prof. Dr. Marcus Davis Machado Braga pelo grande incentivo à carreira docente.

À Sra. Maria Wallita Linhares Pereira, à Sra. Luciana Silva da Costa e à Sra. Suely Francisco pela grande ajuda nos momentos difíceis.

À minha esposa Marília de Andrade Guedes Giesta pela imensa paciência, amor e dedicação.

Ao meu filho Leonardo de Andrade Guedes Giesta, o sentido da minha vida.

Aos meus pais Chrispim Giesta Olmedo e Idaya Pinto Giesta, pois sem eles eu não estaria aqui.

À minha avó Marina Pinto Teixeira (in memorian), uma das pessoas que mais amei.

Às minhas irmãs Anna Michèlle Pinto Giesta e Josyanne Pinto Giesta pelo grande apoio e imenso ensinamento de vida.

A todos que diretamente ou indiretamente contribuíram para a realização deste trabalho.

RESUMO

Giesta RP. Estudo do valor preditivo e prognóstico de marcadores imunológicos no linfoma de Hodgkin clássico, no Ceará – Brasil. Fortaleza; 2012. [Tese de Doutorado-Instituto do Câncer do Ceará/Fundação Antônio Prudente]

O linfoma de Hodgkin clássico (LHc) apresenta desafios terapêuticos com fatores preditivos e prognósticos pouco confiáveis. A análise imunohistoquímica é valiosa para o diagnóstico e, provavelmente, também para o prognóstico desta doença. O objetivo deste estudo é avaliar a importância preditiva e prognóstica da expressão do CD15, CD20, LMP-1, p53 e Bcl-2 nos pacientes com LHc no que se refere à refratariedade ao tratamento, à recidiva, à sobrevida câncer específica e à sobrevida livre de doença. Foi realizada uma coorte retrospectiva dos pacientes diagnosticados entre 01/2000 e 12/2009, com acompanhamento médio de 65,4 meses (1 - 141 meses). Foram estudados 273 pacientes tratados homogeneamente com o esquema ABVD, com ou sem radioterapia. Setenta e oito pacientes (28,6%) foram refratários ao ABVD e ocorreu recidiva em 19 (9,7%) dos 195 pacientes que atingiram remissão completa. Trinta e oito pacientes (13,9%) morreram. A prevalência do marcador CD15 foi 77,0%; do CD20, 18,7%; do LMP-1, 42,5%; do p53, 96,0% e do Bcl-2, 22,1%. Os casos que apresentaram CD15 positivo apresentaram menor associação com a refratariedade (p=0,038). Nenhum dos imunomarcadores estudados apresentou associação com a recidiva. O p53 apresentou-se como um indicador de melhor prognóstico em relação à sobrevida livre de doença (p=0,016) e à sobrevida câncer específica (p=0,041) na análise univariada. Contudo, ele perdeu a significância estatística na análise multivariada.

SUMMARY

Giesta RP. [Study of the predictive and prognostic value of immunological markers in the classic Hodgkin's lymphoma, in Ceará - Brazil]. Fortaleza; 2012. [Tese de Doutorado-Instituto do Câncer do Ceará/Fundação Antônio Prudente]

Classic Hodgkin's lymphoma (cHL) presents therapeutic challenges with few reliable prognostic and predictive factors. The immunohistochemical analysis is valuable for the diagnosis and possibly also for the prognosis of this disease. The objective of this study is to evaluate the predictive and prognostic importance of the expression of CD15, CD20, LMP-1, p53 and Bcl-2 in patients with cHL regarding refractoriness to treatment, recurrence, specific cancer survival and disease-free survival. This was done using a retroprospective cohort of patients diagnosed from 01/2000 to 12/2009, with mean follow-up time of 65.4 months (1-141 months). Were studied 273 patients homogeneously treated with the ABVD scheme with or without radiotherapy. Seventy-eight patients (28.6%) failed to respond to ABVD, and recurrence was observed in 19 (9.7%) of the 195 patients who had experienced complete remission. Thirty-eight patients (13.9%) died. The prevalence of the CD15 marker was 77.0%; of the CD20, 18.7%; of the LMP-1, 42.5%; of the p53, 96.0%; and of the Bcl-2, 22.1%. The cases that showing positive CD15 were less associated with refractoriness (p=0.038). None of the studied markers were associated with recurrence. The p53 proved to be an indicator for improved prognosis regarding disease-free survival (p=0.016) and for cancer-specific survival (p=0.041), in the univariate analysis. However, it lost the statistical significance in multivariate analysis.

LISTA DE FIGURAS

Figura 1	gura 1 Thomas Hodgkin (1798 - 1866)					
Figura 2	Célula de Hodgkin lacunar (400x, caso 47)	13				
Figura 3	Linfoma de Hodgkin clássico esclerose nodular (40x, caso 47)	14				
Figura 4	Linfoma de Hodgkin clássico celularidade mista (1000x, caso 87)	15				
Figura 5	Linfoma de Hodgkin clássico rico em linfócitos (400x, caso 59)	16				
Figura 6	Linfoma de Hodgkin clássico depleção linfocítica (400x, caso53)	17				
Figura 7	Gráfico da evolução histórica da incidência de LH celularidade mista e esclerose nodular, no Ceará	19				
Figura 8	Dorothy Reed Mendenhall (1874 - 1964)	20				
Figura 9	Células de Hodgkin (he 1000x, caso 46)	21				
Figura 10	Linfoma de Hodgkin clássico CD15+ (1000x, caso 70)	27				
Figura 11	Linfoma de Hodgkin clássico CD20+ (1000x, caso 72)	29				
Figura 12	Linfoma de Hodgkin clássico CD30+ (1000x, caso 70)	30				
Figura 13	Linfoma de Hodgkin clássico LMP-1+ (1000x, caso 43)	35				
Figura 14	Linfoma de Hodgkin clássico p53+ (1000x, Caso86)	40				
Figura 15	Linfoma de Hodgkin clássico Bcl-2+ (1000x, Caso 38)	42				

Figura 16	Idade dos pacientes ao diagnóstico do LH (EUA - 2000/2008)	43
Figura 17	Idade dos pacientes ao diagnóstico (Brasil - 2000)	44
Figura 18	Sexo dos pacientes	70
Figura 19	Idade dos pacientes ao diagnóstico.	71
Figura 20	Subtipo histológico do linfoma	71
Figura 21	Estadio clínico ao diagnóstico	72
Figura 22	Presença de sintomas B	72
Figura 23	Infiltração da medula óssea	73
Figura 24	Positividade do marcador CD15	73
Figura 25	Positividade do marcador CD20	74
Figura 26	Positividade do marcador LMP-1	74
Figura 27	Positividade do marcador p53	75
Figura 28	Positividade do marcador Bcl-2	75
Figura 29	Refratariedade ao tratamento com ABVD	76
Figura 30	Recidiva do linfoma	76
Figura 31	Óbito dos pacientes.	77
Figura 32	Sobrevida dos pacientes	78
Figura 33	CD15 & refratariedade	81

Figura 34	CD20 & refratariedade	81
Figura 35	LMP-1 & refratariedade	81
Figura 36	p53 & refratariedade	82
Figura 37	Bcl-2 & refratariedade	82
Figura 38	CD15 & recidiva	85
Figura 39	CD20 & recidiva	85
Figura 40	LMP-1 & recidiva	85
Figura 41	p53 & recidiva	86
Figura 42	Bcl-2 & recidiva	86
Figura 43	CD15 & sobrevida câncer específica	89
Figura 44	CD20 & sobrevida câncer específica	89
Figura 45	LMP-1 & sobrevida câncer específica	90
Figura 46	p53 & sobrevida câncer específica	90
Figura 47	Bcl-2 & sobrevida câncer específica	91
Figura 48	CD15 & sobrevida livre de doença	93
Figura 49	CD20 & sobrevida livre de doença	94
Figura 50	LMP-1 & sobrevida livre de doença	94

Figura 51	p53 & sobrevida livre de doença			
Figura 52	Bcl-2 & sobrevida livre de doença	95		

LISTA DE QUADROS

Quadro 1	Classificação do linfoma de Hodgkin	10
Quadro 2	Evolução da classificação histopatológica do linfoma de Hodgkin	11
Quadro 3	Classificação de Cotswolds	48
Quadro 4	Fatores de risco em doença localizada, segundo EORTC	51
Quadro 5	Anticorpos utilizados	65

LISTA DE TABELAS

Tabela 1	Distribuição do linfoma de Hodgkin entre os sexos	4
Tabela 2	Distribuição do linfoma de Hodgkin entre os subtipos histológicos (Brasil)	18
Tabela 3	Positividade do CD15 no linfoma de Hodgkin	26
Tabela 4	Positividade do CD20 no linfoma de Hodgkin	28
Tabela 5	Positividade do EBV no Linfoma de Hodgkin	34
Tabela 6	Positividade do p53 no Linfoma de Hodgkin	39
Tabela 7	Positividade do Bcl-2 no Linfoma de Hodgkin	41
Tabela 8	Distribuição do linfoma de Hodgkin quanto à presença de sintomas B	46
Tabela 9	Distribuição do linfoma de Hodgkin entre os estadios clínicos	49
Tabela 10	Frequência de refratariedade do LH ao tratamento inicial	52
Tabela 11	Frequência de recidiva do linfoma de Hodgkin	54
Tabela 12	Análise Univariada (Refratariedade)	80
Tabela 13	Análise Multivariada (Refratariedade)	83
Tabela 14	Análise Univariada (Recidiva)	84
Tabela 15	Análise Univariada (Sobrevida Câncer Específica)	87

Tabela 16	Análise Univariada (Sobrevida Livre de Doença)	92
Tabela 17	Marcadores imunohistoquímicos	97
Tabela 18	CD15 & remissão completa	98
Tabela 19	CD20 & remissão completa	99
Tabela 20	LMP-1/EBER & remissão completa	100
Tabela 21	p53 & remissão completa	100
Tabela 22	Bcl-2 & remissão completa	101
Tabela 23	CD15 & recidiva	102
Tabela 24	CD20 & recidiva	103
Tabela 25	LMP-1/EBER & recidiva	104
Tabela 26	p53 & recidiva	104
Tabela 27	Bcl-2 & recidiva	105
Tabela 28	CD15 & sobrevida	106
Tabela 29	CD20 & sobrevida	107
Tabela 30	LMP-1 e/ou EBER & sobrevida	109
Tabela 31	p53 & sobrevida	110
Tabela 32	Bcl-2 & sobrevida	111
Tabela 33	CD15 & sobrevida livre de doença	112

Tabela 34	CD20 & sobrevida livre de doença	113
Tabela 35	LMP-1/EBER & sobrevida livre de doença	115
Tabela 36	p53 & sobrevida livre de doença	116
Tabela 37	Bcl-2 & sobrevida livre de doença	117

ÍNDICE DE ABREVIATURAS

ABVD Doxrubicina, Bleomicina, Vinblastina, Dacarbazina

AIDS Síndrome da Imunodeficiência Adquirida

CD Cluster of Differentiation

CDC Centers for Disease Control and Prevention

CM Celularidade Mista

DAB Diaminobenzidine Tetrahydrochloride

DHcCM Doença de Hodgkin Clássica Celularidade Mista

DHcDL Doença de Hodgkin Clássica Depleção Linfocítica

DHcEN Doença de Hodgkin Clássica Esclerose Nodular

DHCM Doença de Hodgkin Celularidade Mista

DHcRL Doença de Hodgkin Clássica Rica em Linfócitos

DHDL Doença de Hodgkin Depleção Linfocítica

DHEN Doença de Hodgkin Esclerose Nodular

DHPL Doença de Hodgkin Predominância Linfocítica

DL Depleção Linfocítica

DMSO Dimetilsulfóxido

DNA Ácido Desoxribonucleico

EBER RNA EBV-Codificado

EBV Epstein-Barr Vírus

EC Estadio Clínico

EN Esclerose Nodular

EORTC Organização Européia para Pesquisa e Tratamento do Câncer

EP Estadio Patológico

EUA Estados Unidos da América

HBV Vírus da Hepatite B

HCV Vírus da Hepatite C

HE Hematoxilina-Eosina

HIV Vírus da Imunodeficiência Humana

H-RS Reed-Sternberg e Hodgkin

HTLV Vírus T-Linfotrópico Humano

HUWC Hospital Universitário Walter Cantídio

IC95% Intervalo de Confiança de 95%

ICC Instituto do Câncer do Ceará

IF Interfolicular

IgG Imunoglobulina G

IgH Imunoglobulina H

IL-1 Interleucina-1

INCA Instituto Nacional do Câncer

IPS Escore Internacional de Prognóstico

LH Linfoma de Hodgkin

LHc Linfoma de Hodgkin clássico

LHcCM Linfoma de Hodgkin Clássico Celularidade Mista

LHcDL Linfoma de Hodgkin Clássico Depleção Linfocítica

LHcEN Linfoma de Hodgkin Clássico Esclerose Nodular

LHcRL Linfoma de Hodgkin Clássico Rico em Linfócitos

LHPL Linfoma de Hodgkin Predominância Linfocítica

LHPLN Linfoma de Hodgkin Predominância Linfocítica Nodular

LMP Proteína Latente de Membrana

LNH Linfoma Não-Hodgkin

MOPP Meclaretamina, Vincristina, Procarbazina, Prednisona

NC Não Classificado

NCI National Cancer Institute

NFκB Fator Nuclear κB

NI Não Informado

NLM National Library of Medicine

OMS Organização Mundial da Saúde

OR Odds Ratio

PBS Phosphate Buffered Saline

RC Remissão Completa

REAL Revised European-American Classification of Lymphoid Neoplasma

RL Rico em Linfócitos

RNA Ácido Ribonucleico

RS Reed-Sternberg

SCE Sobrevida Câncer Específica

SDE Sobrevida Doença Específica

SDHE Sobrevida Doença de Hodgkin Específica

SG Sobrevida Global

SLD Sobrevida Livre de Doença

SLE Sobrevida Livre de Evento

SLF Sobrevida Livre de Falhas

SLP Sobrevida Livre de Progressão

SLR Sobrevida Livre de Recidiva

TFT Tempo para Falha do Tratamento

TNF Fator de Necrose Tumoral

UFC Universidade Federal do Ceará

VDRL Venereal Disease Research Laboratory

VHS Velocidade de Hemossedimentação

ÍNDICE

1	INTRODUÇÃO	1
1.1	Revisão bibliográfica	2
1.2	Subtipos histológicos do linfoma de Hodgkin clássico	11
1.2.1	Linfoma de Hodgkin clássico esclerose nodular	12
1.2.2	Linfoma de Hodgkin clássico celularidade mista	14
1.2.3	Linfoma de Hodgkin clássico rico em linfócitos	15
1.2.4	Linfoma de Hodgkin clássico depleção linfocítica	16
1.3	Células de Reed-Sternberg	20
1.4	Marcadores imunohistoquímicos	24
1.4.1	CD15	25
1.4.2	CD20	28
1.4.3	CD30	30
1.4.4	LMP-1	31
1.4.5	p53	36
1.4.6	Bcl-2	40
1.5	Diagnóstico	42
1.6	Apresentação clínica	42
1.7	Estadiamento	47
1.8	Tratamento	48
1.9	Prognóstico	51
1.9.1	Refratariedade	52
1.9.2	Fatores preditivos quanto à refratariedade	53
1.9.3	Recidiva	54
1.9.4	Fatores prognósticos quanto a recidiva do LH	54
1.9.5	Fatores prognósticos quanto a sobrevida	55
1.9.6	Fatores prognósticos quanto a sobrevida livre de doença	57
2	OBJETIVOS	59
2.1	Objetivo Geral	59

2.2	Objetivos Específicos	59
3	JUSTIFICATIVA	60
4	MATERIAL E MÉTODOS	61
4.1	Pacientes	61
4.2	Diagnóstico histopatológico	63
4.3	Estudo imunohistoquímico	63
4.4	Critério de positividade para os marcadores imunohistoquímicos	66
5	CONSIDERAÇÕES ÉTICAS	67
6	ANÁLISES ESTATÍSTICAS	68
7	RESULTADOS	70
7.1	Análise do valor preditivo quanto à refratariedade ao tratamento inicial c	om
	ABVD	79
7.2	Análise do prognóstico quanto à recidiva do LHc	83
7.3	Análise do prognóstico quanto à sobrevida câncer especifica	87
7.4	Análise do prognóstico quanto à sobrevida livre de doença	91
8	DISCUSSÃO	96
8.1	Marcadores imunohistoquímicos	96
8.2	Refratariedade	97
8.3	Recidiva	101
8.4	Sobrevida câncer específica	105
8.5	Sobrevida livre de doença	111
9	CONCLUSÃO	118
10	REFERÊNCIAS RIRLIOGRÁFICAS	119

1 INTRODUÇÃO

Apesar do atual tratamento poliquimioterápico para o linfoma de Hodgkin clássico (LHc) promover uma substancial modificação no prognóstico dessa neoplasia, alguns pacientes não respondem satisfatoriamente ao tratamento inicial preconizado, necessitando de uma segunda abordagem terapêutica com tratamentos de segunda linha. Outros pacientes, mesmo após a remissão, acabam por apresentar uma recidiva da doença. A importância deste estudo é de avaliar o valor preditivo e o valor prognóstico de alguns marcadores imunohistoquímicos no que se refere à refratariedade do LHc ao tratamento inicial com o esquema ABVD, à recidiva do LHc, à sobrevida câncer específica e à sobrevida livre de doença. Assim, tentou-se prever que tipos de pacientes precisarão de uma maior quantidade de ciclos de quimioterapia ou que serão candidatos a um tratamento alternativo.

Alguns estudos tentam relacionar os marcadores imunohistoquímicos que estariam envolvidos com uma maior incidência de refratariedade ao tratamento inicial do LHc, com a recidiva do LHc, com a sobrevida câncer específica e com a sobrevida livre de doença. Contudo, estes trabalhos apresentam resultados conflitantes. A grande maioria dos trabalhos publicados apresenta um número relativamente pequeno de pacientes na amostragem, um curto período de acompanhamento e, principalmente, não apresenta uma padronização da quimioterapia empregada como tratamento inicial. Com este estudo, contribuir-se-á com o avanço na análise do prognóstico e do valor preditivo do tratamento, pois se padronizou o tratamento inicial com o esquema de poliquimioterapia ABVD,

associado ou não à radioterapia, com uma casuística expressiva e com um acompanhamento médio de 65,4 meses (máximo de 141 meses).

1.1 REVISÃO BIBLIOGRÁFICA

O linfoma de Hodgkin (LH) é uma neoplasia linfoproliferativa sólida que pode ser originada a partir de apenas um linfonodo isolado ou de uma cadeia de linfonodos de um mesmo sítio anatômico. Ele pode, eventualmente, disseminar-se por via linfática comprometendo outros linfonodos de forma contígua, ou, mais raramente, pode disseminar-se para locais extranodais por dois processos distintos: extensão direta, como, por exemplo, a partir de linfonodos hilares para o parênquima pulmonar e por via hematogênica, quando, por exemplo, o linfoma acomete o baço, que é uma evidência de disseminação hematogênica.

Historicamente, o comprometimento maligno primário de um linfonodo foi descrito pela primeira vez pelo médico inglês Thomas Hodgkin, em seu clássico trabalho intitulado "On some morbid appearances of the absorbent glands and spleen", o qual foi apresentado à "Medical-chirurgical Society", em 10 de janeiro de 1832, em Londres. Entretanto, a publicação deste trabalho não despertou grande interesse à comunidade científica da época. Thomas Hodgkin descreveu os aspectos clínicos e patológicos de sete doentes com características clínicas incomuns envolvendo linfonodos e que apresentavam um quadro clínico e histológico peculiares. (ALMEIDA 2004) Thomas Hodgkin obteve estes dados clínicos e patológicos através de estudos fornecidos por necropsias. Posteriormente, em 1865, Samuel Wilks propôs que se designasse esta nova classe de patologia como Doenca

de Hodgkin (PITOMBEIRA et al. 1987; REYES 1990; BURKE 1992; ALMEIDA 2004). Atualmente, prefere-se o termo linfoma de Hodgkin à doença de Hodgkin, (JAFFE et al. 2001) por saber-se que se trata, realmente, de um tumor de origem linfonodal.

O LH é bastante raro em crianças abaixo dos quatro anos de idade, e excepcional abaixo dos três anos. Acredita-se que alguns casos diagnosticados como LH em crianças menores de três anos, possivelmente representem exemplos de retículo-histiocitose, especialmente doença de Letterer-Siwe (CHAVES 1972).

O linfoma de Hodgkin corresponde a, aproximadamente, 1/3 de todos os linfomas (SOARES et al. 2000) e é responsável por 0,7% de todos os novos casos de cânceres nos EUA, com aproximadamente 7.400 novos casos/ano.

Dados nacionais mostram que, no ano de 2000, foram diagnosticados 499 casos de LHc, sendo que, destes, 278 eram pacientes do sexo masculino, 220 eram do sexo feminino e um paciente foi considerado como sexo ignorado. Destes 499 pacientes, 83 apresentavam a forma esclerose nodular, 35 a forma celularidade mista, oito a forma rico em linfócitos, quatro a forma depleção linfocítica, dois pacientes foram classificados como outras formas de LHc e 367 pacientes foram classificados como LHc não especificado (Ministério da Saúde 2011).

Segundo o Instituto Nacional do Câncer (INCA), a estimativa de incidência de linfoma de Hodgkin para o ano de 2010 foi de 2.870 casos (Ministério da Saúde 2009).

Observa-se, em pesquisas sobre LH realizadas no Brasil, desde a década de setenta do século passado, uma persistente maior prevalência do sexo masculino. Com exceção dos trabalhos de VASSALO et al. (2002), PINTO (2003) e GIESTA et

al. (2009) que encontraram uma maior prevalência do sexo feminino. Todos os outros trabalhos encontraram uma maior prevalência do sexo masculino, a qual variou de 1,1:1, nos trabalhos de ABREU et al. (1997), LEITE (1998) e ELGUI DE OLIVEIRA et al. (2002) e até 4,1:1, no trabalho de MACHADO et al. (1971).

Tabela 1 - Distribuição do Linfoma de Hodgkin entre os Sexos.

	TIPO	Masculino	Feminino	Frequência	Total de pacientes
Machado et al. 1971	LH	29	07	4,1:1	36
Bittencourt et al. 1987	LH	33	10	3,3:1	43
Pitombeira et al. 1987	LH	79	26	3:1	105
Kirchhoff et al. 1980 ¹	LH	50	20	2,5:1	70
Kirchhoff et al. 1980 ²	LH	535	234	2,3:1	769
Ferreira et al. 1977	LH	82	38	2,2:1	120
Pinheiro et al. 2007	LH	34	17	2:1	51
Chaves 1973	LH	09	05	1,8:1	14
Pitombeira 1980	LH	123	71	1,7:1	194
Elgui de Oliveira et al. 2002 ³	LH	29	17	1,7:1	46
Chaves 1972	LH	11	07	1,6:1	18
Aldred et al. 2008	LHc	137	101	1,4:1	238
Ministério da Saúde 2000	LH	278	220	1,3:1	498
Broecker Neto et al. 1986	LH	39	30	1,3:1	69
Elgui de Oliveira et al. 2002 ⁴	LH	26	24	1,1:1	50
Leite, 1998	LH	26	24	1,1:1	50
Abreu 1996	LH	18	16	1,1:1	34
Giesta et al. 2009	LHc	46	51	1:1,1	97
Vassalo et al. 2001, 2002, 2003	LHc	36	42	1:1,2	78
Pinto 2003	LHc	28	38	1:1,4	66

¹ Estudo Caso-Controle, de 1963-1976

² Total de pacientes com linfoma de Hodgkin atendidos no Hospital A. C. Camargo, de 1953-1976. ³ Casos de São Paulo

⁴ Casos do Ceará

O LH caracteriza-se morfologicamente pela presença da célula de Reed-Sternberg (RS), ou de suas variantes neoplásicas (H-RS), imersa em um substrato celular de aspecto inflamatório, o qual caracteristicamente inclui linfócitos maduros, plasmócitos, histiócitos, eosinófilos e polimorfonucleares, além da, relativamente frequente, presença de necrose (ABREU et al. 1997). Os linfócitos de fundo são policlonais e predominantemente de imunofenótipo T. A célula RS é, portanto, essencial para o diagnóstico histopatológico do LH, porém não é patognomônica da doença, pois pode ser encontrada em outras patologias, como na mononucleose infecciosa (ADDIS e ISAACSON 1986; BURKE 1992).

Uma característica peculiar do LH é o fato de que as células RS e suas variantes neoplásicas constituem uma pequena parcela da população celular, representando aproximadamente de 1% a 2% das células, (SUNDEEN et al. 1987; BANKS 1995) enquanto que, nos linfomas não-Hodgkin, por exemplo, o tipo celular neoplásico que caracteriza a doença é predominante e, com grande frequência, subverte totalmente a arquitetura normal do linfonodo. As células RS podem, excepcionalmente, apresentar-se em grandes grupos, particularmente quando a resistência do hospedeiro é baixa (RAPAPORT 1990).

A etiologia do LH ainda é controversa MACMAHON (1966), considerava-o uma patologia heterogênea, sendo o primeiro a descrever a bimodalidade de sua incidência. Para tentar explicar esta bimodalidade, ele propôs que o LH resultaria de dois mecanismos distintos. Uma forma observada entre adultos jovens, que seria causada por um agente biológico de baixa infectividade e a outra, encontrada entre idosos, que teria uma gênese semelhante a dos outros linfomas.

O antígeno nuclear do Epstein-Barr vírus (EBV) foi primeiramente mostrado no núcleo das células de Reed-Sternberg por POPPEMA et al. (1985). Através de dados sorológicos e epidemiológicos, tem sido suspeitada uma associação do LH com o EBV. Estudos mostram que de 17,0% a 100,0% dos casos de LH são EBV positivo WEINREB et al. (1996) e CLARKE et al. (2001). BERILD et al. (1984) evidenciou uma regressão parcial do LH em pacientes com infecção pelo EBV que foram tratados com aciclovir. A configuração do DNA do EBV é a mesma em todas as células tumorais de determinado caso, indicando que a infecção ocorreu antes da transformação maligna, (WEISS et al. 1987) por conseguinte, a infecção pelo EBV pode constituir uma de várias etapas envolvidas na patogenia do LH. É possível que outros agentes infecciosos, ainda desconhecidos, também possam estar envolvidos na etiopatogenia do LH, sobretudo nos casos de LH-EBV negativo.

Uma base genética para a doença é apoiada em evidências epidemiológicas que demonstram um risco elevado de LH entre gêmeos e entre parentes de primeiro grau, contudo os familiares de um paciente portador de LH apresentam apenas um risco ligeiramente aumentado de desenvolver a doença, em relação à população geral. Essa base genética foi confirmada em amplo estudo de gêmeos, em que 10 de 179 pares de gêmeos monozigóticos foram concordantes para linfoma de Hodgkin, mas nenhum dos 187 pares de gêmeos dizigóticos foi concordante. O EBV estava presente em apenas três dos 10 pares de gêmeos concordantes para LH e, em ambos os gêmeos de apenas um par, indicando etiologia multifatorial do LH (MACK et al. 1995).

A incidência do linfoma de Hodgkin permaneceu praticamente estacionária durante muitos anos, apresentando uma taxa de incidência de 1,4/100.000, em 1941 e

de 1,6/100.000, em 1971, nos EUA, (OLIVEIRA 1990) sendo que, talvez devido ao advento da AIDS, ocorreu uma elevação da incidência deste linfoma, o que pode ser percebido por sua taxa de incidência ter sido de 2,8/100.000 em 2000 Centers for Disease Control and Prevention (CDC) e de 3,1/100.000, em 2007, nos EUA.

Fonte: Kloofs Antiquarian Booksellers (2011)

Figura 1 - Thomas Hodgkin (1798 - 1866)

O primeiro sistema de classificação para o linfoma de Hodgkin foi proposto por JACKSON e PARKER em 1944. Este sistema distinguia três subtipos de LH:

- Paragranuloma (forma mais benigna da doença)
- Granuloma (forma intermediária da doença)
- Sarcoma (forma mais agressiva da doença)

Segundo JACKSON e PARKER (1944), o paragranuloma de Hodgkin é caracterizado pela presença das células RS e de uma ausência de necrose ou fibrose,

aparentando ser uma doença essencialmente dos nódulos linfáticos. Com o passar do tempo, ele pode ser transformado em uma forma mais agressiva, a forma granuloma de Hodgkin.

O granuloma de Hodgkin é caracterizado pela presença das células RS, pleomorfismo, eosinofilia, necrose e fibrose, podendo envolver alguns órgãos do corpo, com exceção do sistema nervoso central, e é frequentemente difuso.

O sarcoma de Hodgkin é caracterizado pela presença das células RS típicas espalhadas no meio de células que são, provavelmente, formas extremamente anaplásicas das células RS. Comportando-se como um verdadeiro tumor, sendo altamente invasivo e maligno e podendo envolver alguns órgãos do corpo, inclusive o sistema nervoso central.

Em 1963, Lukes, Butler e Hicks, citado por CHAVES (1972, p.25) propuseram uma nova classificação, a qual se relacionava com a evolução clínica dos pacientes. Esta era baseada, sobretudo, na quantidade de linfócitos presentes no gânglio afetado. Esta classificação guarda estrita correlação com os diferentes grupos clínico-patológicos da afecção e foi de grande utilidade para estabelecer o prognóstico do LH (BURKE 1992; POPPEMA 1992).

Eles o classificaram em cinco subgrupos:

- Linfocítico e Histiocítico
 - o Nodular
 - o Difuso
- Esclerose nodular
- Celularidade mista
- Fibrose difusa

• Fibrose reticular

Esta classificação apresentava grande dificuldade prática na distinção de seus diferentes subgrupos. No intuito de simplificar esta classificação, em 1966, a partir do simpósio internacional "Obstacles to the Control of Hodgkin's disease" ocorrido na cidade de Rye, em Nova York, foi postulada uma nova classificação, dividindo-o em quatro subgrupos (LUKES et al. 1966; CHAVES 1972):

- Esclerose nodular
- Celularidade mista
- Predominância linfocítica
 - Nodular
 - o Difusa

• Depleção linfocítica

Em 1994, o "International Lymphoma Study Group" publicou uma nova classificação, conhecida como "Revised European-American Classification of Lymphoid Neoplasma – REAL", a qual subdividia a Doença de Hodgkin em:

- Esclerose nodular
- Predominância linfocítica
- Doença de Hodgkin clássica rica em linfócitos
- Celularidade mista
- Depleção linfocítica

Em 2001, na cidade de Lyon (França), um projeto da Sociedade de Hematologia e da Associação Européia de Hematologistas, com o patrocínio da Organização Mundial da Saúde (OMS), lançou a classificação de doenças neoplásicas dos tecidos linfóides e hematopoiéticos, que distinguia o LH em dois

subtipos histológicos: LH predominância linfocítica nodular e LHc. Dentro do LHc, quatro subtipos têm sido diferenciados: esclerose nodular (tipo I e tipo II), rico em linfócitos, celularidade mista e depleção linfocítica (JAFFE et al. 2001; THOMAS et al. 2004). Em 2008, a OMS lançou a mais nova classificação do linfoma de Hodgkin, praticamente sem alterações em relação à anterior.

Quadro 1 - Classificação do Linfoma de Hodgkin (OMS 2008).

Linfoma Hodgkin

Linfoma Hodgkin predominância linfocítica nodular

Linfoma Hodgkin Clássico

Linfoma Hodgkin clássico esclerose nodular

Linfoma Hodgkin clássico rico em linfócitos

Linfoma Hodgkin clássico celularidade mista

Linfoma Hodgkin clássico depleção linfocítica

Fonte: ANAGNOSTOPOULOS et al. (2008); JAFFE (2009)

A principal diferença das classificações da OMS em relação à classificação de Rye é a divisão do LH em dois grandes grupos; o linfoma de Hodgkin clássico (LHc) e o linfoma de Hodgkin predominância linfocítica nodular. O LHc inclui as formas esclerose nodular, celularidade mista e depleção linfocítica, além de um novo subtipo denominado linfoma de Hodgkin rico em linfócitos, o qual derivou do subtipo doença de Hodgkin predominância linfocítica tipo difuso. Não há mudanças significativas da classificação REAL, exceto pelo fato do linfoma de Hodgkin

clássico rico em linfócitos ser considerado uma categoria definitiva, ao invés de uma entidade provisória como classificado anteriormente.

Quadro 2 - Evolução da Classificação Histopatológica do Linfoma de Hodgkin.

Jackson e Parker	Lukes et al.	Rye	REAL	OMS	OMS
(1944)	(1963)	(1966)	(1994)	(1997)	(2001/2008)
Paragranuloma	Linfocítico/histiocítico	DHPL	DHPL	LHPL	LHPLN
	1.nodular	1.nodular			
	2.difuso	2.difuso →	DHcRL	LHcRL	LHcRL
X	Esclerose nodular	DHEN	DHcEN	LHcEN	LHcEN
Granuloma 🔷	Celularidade mista	DHCM	DHcCM	LHcCM	LHcCM
	Fibrose difusa	DHDL	DHcDL	LHcDL	LHcDL
Sarcoma	Fibrose reticular				

Legenda:

DHPL: Doença de Hodgkin Predominância Linfocítica; DHEN: Doença de Hodgkin Esclerose Nodular; DHCM: Doença de Hodgkin Celularidade Mista; DHDL: Doença de Hodgkin Depleção Linfocítica; DHcRL: Doença de Hodgkin Clássica Rica em Linfócitos; DHcEN: Doença de Hodgkin Clássica Esclerose Nodular; DHcCM: Doença de Hodgkin Clássica Celularidade Mista; DHcDL: Doença de Hodgkin Clássica Depleção Linfocítica; LHPL: Linfoma de Hodgkin Predominância Linfocítica; LHcRL: Linfoma de Hodgkin Clássico Rico em Linfócitos; LHcEN: Linfoma de Hodgkin Clássico Esclerose Nodular; LHcCM: Linfoma de Hodgkin Clássico Celularidade Mista; LHcDL: Linfoma de Hodgkin Clássico Depleção Linfocítica; LHPLN: Linfoma de Hodgkin Predominância Linfocítica Nodular

1.2 SUBTIPOS HISTOLÓGICOS DO LINFOMA DE HODGKIN CLÁSSICO

A atual classificação histopatológica do linfoma de Hodgkin fundamenta-se, principalmente, na diferença da composição do infiltrado celular encontrado no linfonodo acometido, particularmente no que se refere à quantidade de linfócitos e histiócitos presentes.

O exame histopatológico reflete a resistência do hospedeiro ao LH e, consequentemente, o prognóstico. Portanto, o diagnóstico histopatológico correto do LH é de grande importância para uma avaliação de prognóstico.

1.2.1 Linfoma de Hodgkin Clássico Esclerose Nodular

Este subtipo histológico é encontrado em aproximadamente 50% dos casos de LH, (MURAD 1997) sendo o subtipo histológico mais frequente nos pacientes de países desenvolvidos. (BANKS 1990) A célula neoplásica característica deste subtipo histológico é uma variante da célula RS, denominada de célula lacunar. Esta se caracteriza por ser uma célula grande com núcleo proeminente e citoplasma retraído por artefato. Também podem ser encontradas células RS típicas, mas em muito menor quantidade do que as células lacunares. A principal característica histológica deste subtipo é a proliferação de faixas de tecidos fibrosos colagênicos delimitando nódulos celulares irregulares, compostos em maior ou menor grau por linfócitos, histiócitos, neutrófilos, eosinófilos, plasmócitos e células RS, principalmente da variante lacunar. A fibrose, neste subtipo, pode ser escassa ou abundante. Focos de necrose podem estar presentes, assim como as chamadas "células múmias" (degeneradas ou mortas) (BURKE 1992; FERRY et al. 1993).

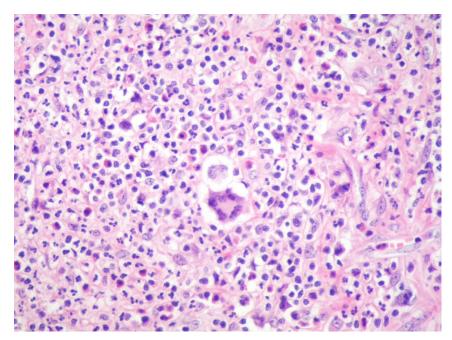


Figura 2 - Célula de Hodgkin Lacunar (400x, Caso 47)

Este subtipo histológico pode ser subdividido em dois grupos:

Grupo I: Apresenta infiltrado celular muito rico, com predomínio de linfócitos ou com celularidade mista.

Grupo II: Apresenta mais de 50% do nódulo com depleção celular intensa.

Este subtipo histológico é visto mais frequentemente em pacientes jovens e é duas vezes mais frequente em mulheres do que em homens (RAPAPORT 1990). Geralmente surge em linfonodos do mediastino superior, da região cervical ou supraclavicular (ABREU et al. 1997). O prognóstico destes pacientes tende a ser muito bom (MURAD 1997; COTRAN et al. 2005). O genoma do EBV pode ser identificado em aproximadamente 40% das células RS.

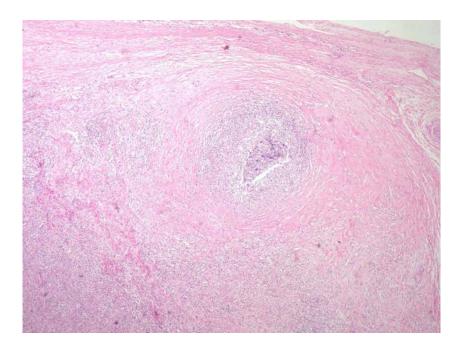


Figura 3 - Linfoma de Hodgkin clássico Esclerose Nodular (40x, Caso 47)

1.2.2 Linfoma de Hodgkin Clássico Celularidade Mista

Este subtipo representa aproximadamente 40% dos casos de linfoma de Hodgkin (MURAD 1997). Morfologicamente, apresenta-se como um infiltrado celular polimórfico difuso, com eosinófilos, neutrófilos, plasmócitos, linfócitos e histiócitos reacionais, e sem faixas de esclerose. As células RS típicas estão presentes em número variável, sendo, geralmente, facilmente visualizadas. O EBV é encontrado na maioria das células RS (60% - 70%) (COTRAN et al. 2005).

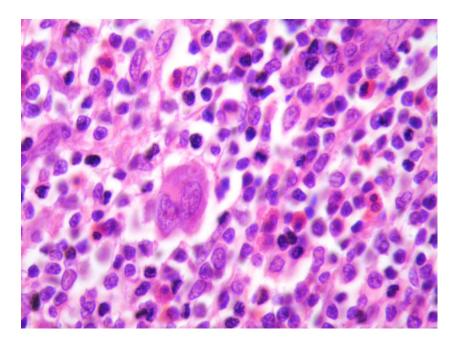
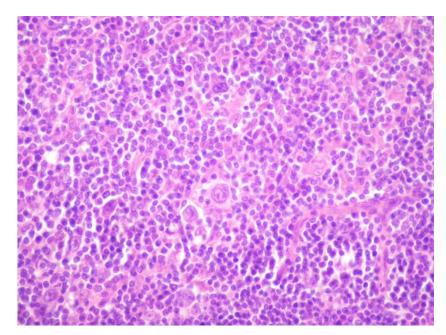
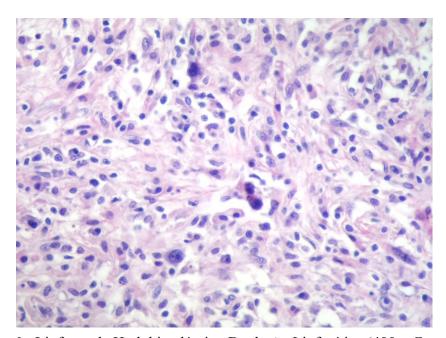



Figura 4 - Linfoma de Hodgkin clássico Celularidade Mista (1000x, Caso 87)

1.2.3 Linfoma de Hodgkin Clássico Rico Em Linfócitos

Este subtipo histológico corresponde ao antigo subtipo predominância linfocítica de padrão difuso. Apresenta poucas células RS típicas e há grande quantidade de pequenos linfócitos com um grau variável de proliferação histiocítica reativa. Os plasmócitos são infrequentes e os eosinófilos e neutrófilos são raros. Observa-se pouca ou nenhuma necrose ou fibrose (HARRIS et al. 1994; ASHTON-KEY et al. 1995; ANAGNOSTOPOULOS et al. 2000). O EBV está presente em 40% a 100% dos pacientes. Apresenta um comportamento eminentemente benigno, o que pode ser explicado, em parte, por uma melhor resposta imunológica observada nestes pacientes, traduzida histologicamente pela grande quantidade de linfócitos. Os pacientes são jovens, com predileção do sexo masculino e apresentam uma doença indolente.

Figura 5 - Linfoma de Hodgkin clássico rico em Linfócitos (400x, Caso 59)


1.2.4 Linfoma de Hodgkin Clássico Depleção Linfocítica

Representa menos de 5% dos casos de linfoma de Hodgkin (BARGOU et al. 1997; MURAD 1997). Morfologicamente, apresenta-se como um infiltrado celular difuso com fibrose e necrose difusas, além de uma escassez de linfócitos, os quais podem ser encontrados apenas em algumas ilhotas residuais esparsas. As células RS típicas e suas variantes pleomórficas são relativamente abundantes e, às vezes, estão presentes em grupos. Existe escassez de células inflamatórias.

Podem-se destacar dois padrões morfológicos diferentes: a fibrose difusa e a variante reticular. O padrão morfológico de fibrose difusa apresenta-se oligocelular e repleto de material fibrilar proteináceo, onde são encontrados histiócitos pleomórficos, células RS típicas e atípicas e alguns raros linfócitos. Ocorre perda da arquitetura, mas a cápsula pode estar intacta. O padrão morfológico reticular

apresenta-se com uma maior população celular, composta principalmente por células anaplásicas grandes e pleomórficas semelhantes às células RS.

A sua incidência tem diminuído nos últimos anos, com alguns estudos mostrando casos antes descritos como LH subtipo depleção linfocítica, sendo agora reclassificados como linfoma não-Hodgkin (LNH) (KANT et al. 1986). É o subtipo histológico que apresenta o pior prognóstico (MURAD 1997; SOARES et al. 2000; COTRAN et al. 2005). Aproximadamente 70% estão associados com estágios avançados e 80% com sintomas B (NEIMAN et al. 1973).

Figura 6 - Linfoma de Hodgkin clássico Depleção Linfocítica (400x, Caso53)

Em uma revisão bibliográfica nacional foi encontrada uma grande variação sobre qual seria o subtipo histológico mais frequente em nosso meio. Algumas pesquisas mostram uma maior prevalência do subtipo CM (CHAVES 1972; CHAVES 1973; FERREIRA e MENEZES 1977; FERREIRA et al. 1977; KIRCHHOFF et al. 1980; PITOMBEIRA 1980; BROECKER NETO et al. 1986; PITOMBEIRA et al. 1987; ARMSTRONG et al. 1993; ABREU et al. 1997; LEITE

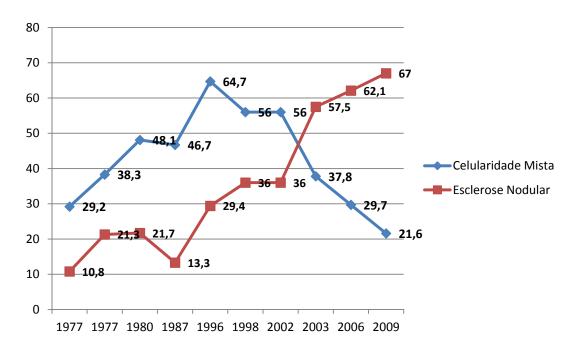

1998; ELGUI DE OLIVEIRA et al. 2002) e outras mostram uma maior prevalência do subtipo EN (BITTENCOURT et al. 1987; VASSALO et al. 2001, 2002, 2003; PINTO 2003; PINHEIRO et al. 2007; ALDRED et al. 2008; GIESTA et al. 2009).

Tabela 2 - Distribuição do Linfoma de Hodgkin entre os Subtipos Histológicos (Brasil).

	CM	EN	RL^1	DL	IF	NC	Total
Chaves 1972	10	3	4	1	-	-	18
	(55,6%)	(16,7%)	(22,2%)	(5,6%)			18
Chaves 1973	9	1	3	1	-	-	14
	(64,3%)	(7,1%)	(21,4%)	(7,1%)			14
Ferreira et al. 1977	35	13	7	21	-	44	120
	(29,2%)	(10,8%)	(5,8%)	(17,5%)		(36,7%)	120
Ferreira e Menezes 1977	18	10	6	13	-	-	47
	(38,3%)	(21,3%)	(12,8%)	(27,6%)			.,
Pitombeira 1980	62	28	8	26	-	5	129
	(48,1%)	(21,7%)	(6,2%)	(20,2%)		(3,8%)	
Kirchhoff et al. 1980	28	15	18	9	-	-	70
D 1 11 1000	(40,0%)	(21,4%)	(25,7%)	(12,9%)			
Broecker Neto et al. 1986	34	19	10	6	-	-	69
D' 1 1005	(49,1%)	(27,8%)	(14,7%)	(8,2%)			
Bittencourt et al. 1987	10	29	1	3	-	-	43
P': 1 : 1 1007	(23,3%)	(67,4%)	(2,3%)	(6,4%)		20	
Pitombeira et al. 1987	49	14	13	9	-	20	105
A 1 1002	(46,7%)	(13,3%)	(12,4%)	(8,6%)		(19,0%)	
Armstrong et al. 1993	(48,0%)	10 (40,0%)	(8,0%)	-	=	-	25
Abreu 1996	22	10	(8,070)	(4,0%)	_	1	
Ableu 1990	(64,7%)	(29,4%)	-	(2,9%)	_	(2,9%)	34
Leite 1998	28	18	_	3	_	1	
Lette 1998	(56,0%)	(36,0%)	_	(6,0%)	_	(2,0%)	50
Vassalo et al. 2001, 2002, 2003	15	61	-	1	_	1	
v assaio et al. 2001, 2002, 2003	(19,2%)	(78,2%)	_	(1,3%)	_	(1,3%)	78
Elgui de Oliveira et al. 2002 ²	28	18	_	3	_	1	
Eigai de Onvena et al. 2002	(56,0%)	(36,0%)		(6,0%)		(2,0%)	50
Elgui de Oliveira et al. 2002 ³	28	9	4	1	_	4	
21gui ut 311 (11 u t) ui. 2002	(60,9%)	(19,6%)	(8,7%)	(2,2%)		(8,7%)	46
Pinto 2003	25	38	-	1	-	2	
	(37,8%)	(57,5%)		(1,5%)		(3,0%)	66
Pinheiro et al. 2007	7	38	3	3	-	-	
	(13,7%)	(74,5%)	(5,9%)	(5,9%)			51
Aldred et al. 2008	86	116	NI	NI	NI	NI	220
	(26,6%)	(48,7%)					238
Giesta et al. 2009	21	65	5	4	2	-	97
	(21,6%)	(67,0%)	(5,2%)	(4,1%)	(2,1%)		9/

¹ Até a Classificação REAL (1994), nesta categoria estavam inclusos os pacientes agora classificados como LHc rico em linfócitos e os pacientes LH predominância linfocítica nodular; ² Casos do Ceará; ³ Casos de São Paulo. **Legenda:** CM: Celularidade mista; EN: Esclerose nodular; RL: Rico em linfócitos; DL: Depleção linfocítica; IF: Interfolicular; NC: Não classificado; NI: Não informado

Nos últimos anos vêm se observando uma mudança do padrão histológico predominante do linfoma de Hodgkin no Ceará. As primeiras pesquisas realizadas no Ceará apontavam para uma maior predominância do subtipo celularidade mista, (FERREIRA et al. 1977; FERREIRA e MENEZES 1977; PITOMBEIRA 1980; PITOMBEIRA et al. 1987; ABREU 1996; LEITE 1998; ELGUI DE OLIVEIRA et al. 2002). Contudo, nos últimos anos, observa-se uma predominância acentuada do subtipo esclerose nodular (PINTO 2003; PINTO et al. 2006; GIESTA et al. 2009).

Figura 7 - Gráfico da evolução histórica da incidência de LH celularidade mista e esclerose nodular, no Ceará

1.3 CÉLULAS DE REED-STERNBERG

Em 1872 ocorreu a primeira descrição microscópica do LH, por Langhans. Greenfiel, em 1878, foi o primeiro a chamar à atenção para as células multinucleadas presentes nos casos de linfoma da Hodgkin (REYES 1990). Posteriormente, o patologista austríaco Carl Sternberg, em 1898, e a médica norte americana Dorothy Reed Mendenhall, em 1902, reconheceram a grande importância da presença de uma célula gigante e binucleada para o diagnóstico desta doença (BURKE 1992; POPPEMA 1992). Esta célula passou a ser denominada de célula de Reed – Sternberg. Posteriormente foram descritas variantes desta célula, às quais foi dado o nome genérico de células de Hodgkin.

Fonte: National Library of Medicine (NLM) (2006) e University of Wisconsin-Madison (2011)

Figura 8 - Dorothy Reed Mendenhall (1874 - 1964)

As células RS são o elemento neoplásico de todas as formas do LH, de maneira que a sua identificação é essencial para o diagnóstico histopatológico do LH.

A célula RS típica é volumosa (15 – 45 μm de diâmetro), binucleada ou bilobulada, às vezes com núcleos com imagem especular um do outro (imagem em espelho). Apresenta um ou vários nucléolos gigantes eosinofílicos proeminentes, os quais, algumas vezes, lembram corpúsculos de inclusão, dando a aparência de "olhos de coruja". O citoplasma é abundante e ligeiramente basófilo. Tipicamente a membrana nuclear mostra-se espessada e a cromatina ausente em volta do nucléolo, formando um halo perinuclear. A célula RS é aneuplóide e contém aberrações citogenéticas clonais.

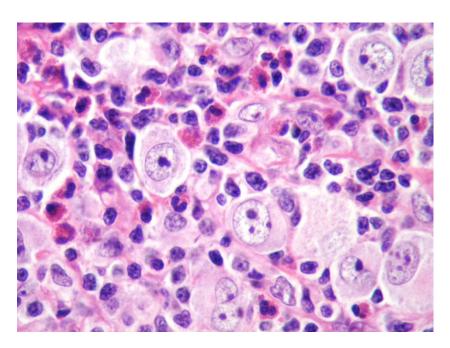


Figura 9 - Células de Hodgkin (HE 1000x, Caso 46)

Ao lado destas formas binucleadas típicas e das multinucleadas também são vistas formas com um único núcleo, representando, para alguns autores (OLIVEIRA 1990), uma forma uninucleada da célula RS. Para outros, (BANKS 1990) talvez

representem células RS cortadas em um plano que evidencia apenas um lobo do núcleo.

As variantes lacunares da célula RS são observadas predominantemente no subtipo esclerose nodular. Elas possuem núcleos dobrados mais delicados ou multilobulados, circundados por citoplasma polido e abundante que, quase sempre, sofre rotura durante a realização dos cortes, deixando o núcleo em um espaço vazio – lacuna.

As variantes linfocíticas e histiocíticas são células de grande volume com núcleo claro, irregular, multilobulado, polipóide, semelhante a um grão de pipoca (popcorn cell). Estas células apresentam características imunológicas diferentes das células RS, sendo importantes no diagnóstico do LH predominância linfocítica nodular (ALMEIDA 2004).

Como já foi mencionado, as células RS não são patognomônicas do LH, pois podem ser encontradas em alguns quadros infecciosos, como na mononucleose infecciosa, (ADDIS e ISAACSON 1986; BURKE 1992) ou em outras neoplasias, como na micose fungóide, nos linfomas anaplásicos, nos linfomas de células T (ABREU et al. 1997) e também como reações a drogas. Já foi demonstrada a presença de células morfologicamente semelhantes às células RS em linfonodos de pacientes com leishmaniose visceral e também em pacientes com tuberculose (FERREIRA e MENEZES 1977).

A natureza das células RS ainda é objeto de intensa investigação e controvérsias. "Praticamente todas as células do sistema imunitário já foram imputadas como originárias da célula RS" (SOARES et al. 2000). Inicialmente, acreditava-se que elas pudessem ser o resultado da fusão entre linfócitos e células

reticulares ou mesmo entre linfócitos (HALUSKA et al. 1994). Posteriormente, postulou-se que sua origem estaria relacionada a diferentes tipos celulares, como macrófagos ou histiócitos, células reticulares dendríticas, células reticulares interdigitais ou granulócitos (SAID 1992; AMBINDER et al. 1993; HALUSKA et al. 1994). A habilidade que as células RS têm para ingerir complexos imunes, bem como partículas de látex, hemácias e linfócitos levantou a possibilidade de uma origem histiocitária (HALUSKA et al. 1994).

Com o advento da análise imunohistoquímica, observou-se uma heterogeneidade confusa da expressão antigênica do linfoma de Hodgkin. As células H-RS expressam marcadores de superfície, como antígenos de histocompatibilidade da classe II e da classe B7, que são característicos das células apresentadoras de antígenos, como macrófagos ou linfócitos B. VASSALO et al. (2002) afirmam que mais de 98% das células neoplásicas no LHc são originadas dos linfócitos B.

Evidências de origem de células B incluem: relato da produção de antígenos específicos de linfócitos B, como a cadeia J (POPPEMA 1992) e a tendência do LH predominância linfocítica variante nodular (classificação de Rye 1966) progredir para LNH – B difuso de grandes células em até 10% dos casos (MENESTRINA et al. 1995).

Estudos imunohistoquímicos e moleculares têm demonstrado que, em LHc, a maior parte das células H-RS é derivada de células B do centro germinativo com um rearranjo clonal do gene da imunoglobulina de cadeia pesada (IgH) com numerosas mutações somáticas da região variável, mas sem expressão de receptores de células B em sua superfície (SUNDEEN et al. 1987; WEISS et al. 1987; HALUSKA et al. 1994; HUMMEL et al. 1995; STEIN 1997; KUPPERS e RAJEWSKY 1998;

RASSIDAKIS et al. 2002b). A presença de mutações deletérias (incapacitantes) no gene da IgH, tais como parada de códons ou perca da transcrição do gene da IgH devido a defeitos funcionais nos elementos regulatórios do gene da IgH sugere o resgate dos precursores da H-RS da apoptose por um evento transformador (MAGGIO et al. 2001).

Tentando explicar como as células H-RS podem apresentar tanto antígenos pertencentes à linhagem dos linfócitos B como também a dos linfócitos T, pode-se sugerir que as células derivam de linfoblastos em diferentes estágios de maturação, antes ou durante o surgimento dos rearranjos gênicos que darão origem aos receptores de superfície. Outra tentativa de explicar esta heterogeneidade postula que a expressão antigênica da célula neoplásica, em um dado caso, pode mudar, dependendo das citocinas e de outros fatores associados com o infiltrado de células inflamatórias. ZUKERBERG et al. (1991) sugere que, na ausência de um clássico fundo inflamatório, a célula H-RS expressa antígenos da linhagem B. Uma vez que, na presença de um típico infiltrado inflamatório de eosinófilos e/ou neutrófilos, estes antígenos são perdidos, e os antígenos CD15 e CD30 são expressos. Se a troca da expressão antigênica nas células H-RS é causa ou efeito do fundo inflamatório, ainda precisa ser mais estudado.

1.4 MARCADORES IMUNOHISTOQUÍMICOS

A imunohistoquímica tem valor diagnóstico tanto na reorganização dos subtipos histológicos tradicionais do LHc, como na distinção de outras desordens linfoproliferativas com células RS-símile (BROUSSET 1999; CHAN 2001; DOGAN

et al. 2003). Os antígenos detectados por anticorpos de imunohistoquímica em células H-RS de pacientes com LHc são, entre outros:

1.4.1 CD15

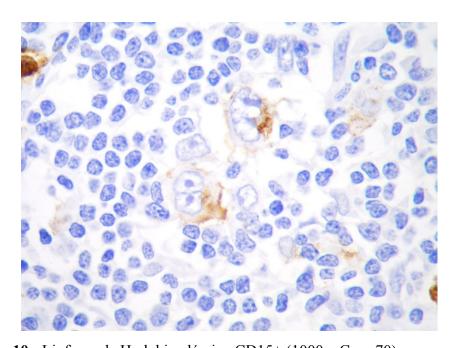

Foi originalmente descrito como um antígeno de diferenciação de células mielomonocíticas. Estudos imunohistoquímicos adicionais têm demonstrado que ele também pode ser detectado em várias outras células (VON WASIELEWSKI et al. 1997a). Este antígeno é primariamente encontrado em monócitos e macrófagos, mas também é expresso em todos os granulócitos e em uma grande maioria das células H-RS. DINAND et al. (2008) afirma que o antígeno CD15 é usualmente encontrado em granulócitos maduros e em células H-RS. Não se pode dizer que o CD15 é específico de uma única linhagem celular, pois, na realidade, ele tem uma grande distribuição tanto em tecidos normais humanos quanto em uma grande variedade de tumores malignos e benignos (SHEIBANI et al. 1986). O CD15 pode, também, ser encontrado em linfócitos T e células infectadas pelo citomegalovírus. (BANKS 1995) Sua coloração pode ser membranácea, paranuclear, citoplasmática ou, em alguns casos, uma combinação de ambos. O LHc apresenta uma positividade alta das células de H-RS para o CD15 variando entre 27,3%, por FORNI et al. (1985) a 100,0%, por HYDER e SCHNITZER (1986).

Tabela 3 - Positividade do CD15 no Linfoma de Hodgkin.

	Nº de pacientes estudados	Nº de pacientes positivos	% CD15
Forni et al. 1985	11	3	27,3%
Bishop et al. 1991	50	18	36,0%
Fu et al. 2008	70	26	37,1%
Sarker et al. 1992	33	13	39,4%
Patkar et al. 2008	397	195	49,1%
Enblad et al. 1993	154	87	56,5%
Vassalo et al. 2003	78	45	57,7%
Stein et al. 1985	107	62	57,9%
Petrella et al. 1989	108	64	59,3%
Medeiros et al. 1988	53	33	62,3%
Asano et al. 2006	319	202	63,3%
Tamaru et al. 1990	63	40	63,5%
Molot et al.	46	30	65,2%
Agnarsson e Kadin 1989	50	33	66,0%
Tzankov et al. 2003a	253	167	66,0%
Barros et al. 2008	65	43	66,2%
Jack et al. 1986	65	43	66,2%
Zarate-Osorno et al. 1995	27	18	66,7%
Werner et al. 1990	94	65	69,1%
Ree et al. 1989	91	63	69,2%
Wieczorek et al. 1988	20	14	70,0%
Burroni et al. 1988	27	19	70,4%
De Mascarel et al. 1990	153	111	72,5%
Meis et al. 1986	15	11	73,3%
Morente et al. 1997	140	104	74,3%
Montalbán et al. 2000	82	61	74,4%
Pinto 2003	52	39	75,0%
Zukerberg et al. 1991	20	15	75,0%
Audouin et al. 2010	45	34	75,6%
Low et al. 2001	259	198	76,4%
Montalban et al. 2004	259	198	76,4%
Ellis et al. 1992	18	14	77,8%
Sheibani et al. 1986	45	35	77,8%
Norton e Isaacson 1996	32	25	78,1%
Schmid et al. 1991	55	43	78,2%
Dorfman et al. 1986	23	18	78,3%
Strauchen e Dimitriu-Bona 1986	14	11	78,6%
Hall e D'Ardenne 1987	571	457	80,0%
Giesta et al. 2009(CE)	97	79	81,4%

Cont/ Tabela 3

	Nº de pacientes estudados	Nº de pacientes positivos	% CD15
Hall et al. 1988	43	35	81,4%
Oliveira 1990	34	28	82,3%
Von Wasielewski et al. 1997a	1286	1085	84,4%
Swerdlow e Wrigth 1986	13	11	84,6%
Myskow e Krajewski 1986	60	52	86,7%
Chu et al. 2000	1068	928	86,9%
Kornstein et al. 1986	23	20	87,0%
Pinto 2003 (CE)	66	58	87,8%
Pinto et al. 2006	37	32	87,8%
Dinand et al. 2008	121	109	90,1%
Krugmann et al. 2003	119	108	90,8%
Hsu e Jaffe 1984	22	20	90,9%
Leoncini et al. 1990	13	12	92,3%
Pinkus et al. 1985	73	69	94,5%
Tzankov et al. 2003b	119	113	95,0%
Oliveira 1990	41	39	95,1%
Abreu 1996 (CE)	34	33	97,1%
Frierson e Innes 1985	36	35	97,2%
Hyder e Schnitzer 1986	42	42	100,0%

Figura 10 - Linfoma de Hodgkin clássico CD15+ (1000x, Caso 70)

1.4.2 CD20

É uma fosfoproteína transmembrana não glicosilada de 35kD com funções de canal de cálcio. Este marcador imunohistoquímico é um antígeno primariamente associado a linfócitos B. Ele está envolvido na regulação da ativação, proliferação e diferenciação dos linfócitos B (RASSIDAKIS et al. 2002b; PORTLOCK et al. 2004; CANIONI et al. 2009). O CD20 está expresso em linfócitos pré-B medulares e linfócitos B maduros, porém não está expresso em plasmócitos. Apesar de recentes evidências sugerirem uma origem da célula H-RS a partir de células B, a maior parte destas células não é marcada por este antígeno (PORTLOCK et al. 2004).

Em uma revisão bibliográfica internacional a positividade para o CD20 variou de 4,5% (PINTO 2003) a 58,2% (SCHMID et al. 1991).

Tabela 4 - Positividade do CD20 no Linfoma de Hodgkin.

	Nº de pacientes estudados	Nº de pacientes positivos	% CD20
Pinto 2003 (CE)	67	3	4,5%
Von Wasielewski et al. 1997a	1286	63	4,9%
Abreu 1996 (CE)	34	3	8,8%
Donnelly et al. 1999	181	16	8,8%
Vassalo et al. 2002	78	7	9,0%
Portlock et al. 2004	248	28	11,3%
Elgui de Oliveira et al. 2002 (CE)	50	6	12,0%
Aldred et al. 2008	238	33	13,8%
Lauritzen et al. 1991	27	4	14,8%
Zarate-Osorno et al. 1995	27	4	14,8%
Audouin et al. 2010	45	7	15,6%
Patkar et al. 2008	397	62	15,6%
Chang et al. 2005	42	7	16,7%
Low et al. 2001	259	45	17,4%
Elgui de Oliveira et al. 2002 (SP)	34	6	17,6%
Asano et al. 2006	304	54	17,8%
Agnarsson e Kadin 1989	50	9	18,0%

Cont/ Tabela 4

	Nº de pacientes estudados	N° de pacientes positivos	% CD20
Montalbán et al. 2004	245	45	18,4%
Molot et al. 1994	46	9	19,6%
Tzankov et al. 2003b	119	24	20,2%
Lauritzen et al. 1999	50	11	22,0%
Rassidakis et al. 2002b	598	132	22,1%
Bai et al. 1994	64	15	23,4%
Tamaru et al. 1990	63	15	23,8%
Chu et al. 2000	629	152	24,2%
Enblad et al. 1993	154	40	26,0%
Molot et al. 1994	46	12	26,1%
Fu et al. 2008	70	21	30,0%
Zukerberg et al. 1991	20	6	30,0%
Canioni et al. 2009	59	19	32,2%
Tzankov et al. 2003a	253	84	33,2%
Giesta et al. 2009(CE)	97	37	38,1%
Bishop et al. 1991	50	23	46,0%
Isaacson e Ashton-Key 1996	63	31	49,2%
Schmid et al. 1991	55	32	58,2%

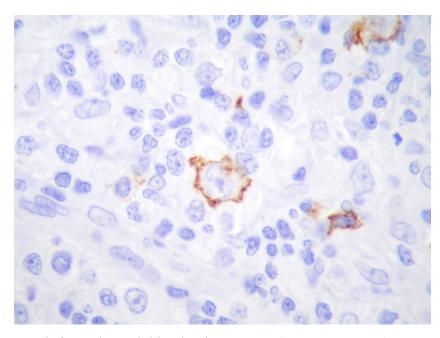


Figura 11 - Linfoma de Hodgkin clássico CD20+ (1000x, Caso 72)

1.4.3 CD30

Antígeno marcador de ativação, presente em linfócitos B ativados, linfócitos T e monócitos. Sua coloração pode ser membranácea, paranuclear ou ambas. Segundo alguns autores, (HALL et al. 1988; SCHMID et al. 1991; ENBLAD et al. 1993) o CD30 é positivo nas células de Reed-Sternberg em aproximadamente 90% dos pacientes com LHc. Atualmente, acredita-se que todos os pacientes com LHc apresentem células H-RS positivas para o marcador CD30. A negatividade para o CD30 em um caso clássico de LH pode ser devido à perda antigênica no material pesquisado. (ABREU et al. 1997) Também pode ser encontrado em outras patologias, como no linfoma de células T, na linfadenopatia angioimunoblástica, na papulose linfomatóide e no linfoma anaplásico não-Hodgkin de grandes células (LEITE 1998)

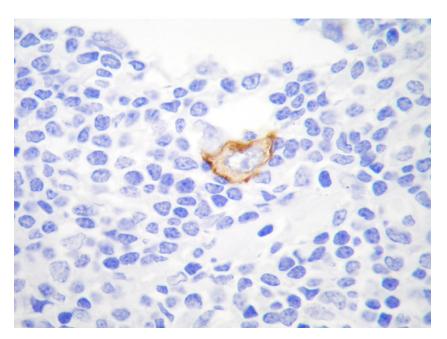


Figura 12 - Linfoma de Hodgkin clássico CD30+ (1000x, Caso 70)

1.4.4 LMP-1

O vírus Epstein-Barr (EBV) é um herpes vírus B-linfotrópico que infecta mais de 90% da população adulta do mundo, (CHABAY et al. 2008) estando associado a vários tipos de cânceres humanos, incluindo o linfoma de Burkitt, o carcinoma nasofaríngeo e o linfoma de Hodgkin (MURRAY et al. 1999). Ele persiste nos linfócitos B como uma infecção silenciosa ao longo da vida (MACSWEEN e CRAWFORD 2003).

Os dois subtipos de EBV, A e B, codificam nove genes expressos de forma latente. São eles: seis antígenos nucleares (antígeno nuclear EBV 1, 2, 3A, 3B, 3C e LP) e três proteínas de membrana (proteínas latentes de membrana 1, 2a e 2b). A proteína latente de membrana 1 (LMP-1) é um oncogene viral estabelecido que está envolvido na transformação de linfócitos B humanos (KAYE et al. 1993).

O papel oncogênico do EBV em LH ainda precisa ser totalmente esclarecido. Um modelo sugere que o EBV inicialmente infecta células B "naive", que se tornam ativadas e transformam-se em células B no centro germinativo por seleção de antígenos, mas então persistem devido à estabilização do programa de transcrição latente do EBV. A proteína latente de membrana EBV-codificada (LMP-1) tem um importante papel na oncogênese, já que ela pode prevenir células B de apoptose mediada por fator de necrose tumoral (TNF) pela ativação de uma variedade de sinalizações moleculares, como o fator nuclear κB (NFκB). Expressão constitutiva do antígeno nuclear-1 e dos LMP1/2A do EBV também podem bloquear uma maior diferenciação destas células B infectadas, dando tempo para acumulação de mutações adicionais adquiridas que levam à transformação neoplásica, (CHANG et al. 2008)

dando origem ao LH-EBV+, isto é, linfoma de Hodgkin com células H-RS infectadas pelo vírus EBV.

Em regiões subdesenvolvidas ou em desenvolvimento, a infecção primária pelo EBV ocorre de alguns meses a alguns anos após o nascimento e a soroconversão para o EBV é quase universal aos seis anos de idade. Ao contrário, em países industrializados, a infecção pelo EBV ocorre somente durante a segunda ou terceira décadas de vida (DINAND e ARYA 2006). A frequência da associação entre o EBV e o LHc depende de vários fatores, entre eles a idade do paciente, a localização geográfica, o status sócio-econômico e o subtipo histológico do linfoma.

A observação de que pessoas com história pregressa de mononucleose infecciosa têm um risco aumentado em duas a três vezes de desenvolver linfoma de Hodgkin, (GUTENSOHN e COLE 1980) e a detecção de elevados níveis de anticorpos contra antígenos virais em pacientes com LH, antes ou ao diagnóstico, (MUELLER et al. 1989; LEVINE et al. 1994; ALEXANDER et al. 1995) forneceu evidências indiretas para um papel causal do EBV no LH.

Uma exposição prévia ao EBV, em face de uma relativamente subdesenvolvida resposta imune, pode ser um fator predisponente para o desenvolvimento do LH EBV+ (CHANG et al. 2005). A este respeito, HJALGRIM et al. (2003) encontrou uma associação positiva entre a mononucleose infecciosa e o LH EBV+. O tempo de incubação mediana da mononucleose infecciosa para o diagnóstico do LH EBV+ foi de 4,1 anos em países desenvolvidos. CHANG et al. (2005) propõe a hipótese de que um rápido começo do LH EBV+ pode ocorrer em pacientes que tiveram mononucleose infecciosa grave em idades precoces, devido ao

achado de uma relação entre a apresentação precoce da mononucleose infecciosa e a alta incidência de LH EBV+.

A correlação entre o EBV e a idade de ocorrência do LH em crianças sulafricanas também apóia a hipótese de um papel etiológico do EBV no desenvolvimento do LH (ENGEL et al. 2000).

Vários pesquisadores têm demonstrado a clonalidade do EBV, no tecido do LH, por hibridização. Estas descobertas indicam uma expansão clonal de uma única célula infectada pelo EBV, sugerindo, mais uma vez, um possível papel etiológico do EBV em uma proporção de casos de LH (MURRAY et al. 1999) (ANAGNOSTOPOULOS et al. 1989).

Há cada vez mais evidências do envolvimento do EBV no desenvolvimento do LH (ENGEL et al. 2000). O vírus tem se mostrado persistente em todos os sítios envolvidos, nos pacientes com LH EBV+, (ENGEL et al. 2000) e sua presença tem sido observada em pacientes com LH EBV+ durante todo o curso da doença.

Em uma metanálise de 14 estudos realizada por GLASER et al. (1997), foi analisado um total de 1546 pacientes com LH, dos quais 618 pacientes apresentaram positividade para o EBV (40,0%). Ele observou, em subgrupos de 5 anos, uma alta percentagem de casos EBV+ em crianças menores de 10 anos e em idosos maiores de 80 anos, e as menores porcentagens ocorreram em adultos jovens, particularmente entre 15 e 29 anos.

Tabela 5 - Positividade do EBV no Linfoma de Hodgkin.

	N° de pacientes estudados	Nº de pacientes positivos	% EBV
Clarke et al. 2001	311	53	17,0%
Herling et al. 2003	577	124	21,5%
Tzankov et al. 2003a	253	60	23,7%
Enblad et al. 1997	107	27	25,2%
Glavina-Durdov et al. 2001	100	26	26,0%
Krugmann et al. 2003	119	31	26,1%
Murray et al. 1999	190	51	26,8%
Tzankov et al. 2003b	119	32	26,9%
Enblad et al. 1999	117	32	27,4%
Flavell et al. 2003	273	78	28,6%
Claviez et al. 2005	842	263	31,2%
Maggio et al. 2001	67	21	31,3%
Axdorph et al. 1999	92	30	32,6%
O'Grady et al. 1994	97	32	33,0%
Jarrett et al. 2005	437	145	33,2%
Stark et al. 2002 (todos LH)	70	24	34,3%
Montalbán et al. 2004	259	91	35,1%
Armstrong et al. 1994	59	21	35,6%
Fellbaum et al. 1992	187	66	35,6%
Stark et al. 2002 (LHc)	64	23	35,9%
Garcia et al. 2003	252	96	38,1%
Glaser et al. 1997	1546	618	40,0%
Aldred et al. 2008	238	97	40,7%
Vestlev et al. 1992	66	27	40,9%
Amini et al. 2002	80	35	43,8%
Amini et al. 2002	81	36	44,4%
Hummel et al. 1992	94	43	45,7%
Vassalo et al. 2003	78	36	46,2%
Gulley et al. 1994	171	80	46,8%
Asano et al. 2006	314	149	47,5%
Claviez et al. 1994	21	10	47,6%
Chabay et al. 2008	65	31	47,7%
Chang et al. 2008	173	86	49,7%
Morente et al. 1997	140	72	51,4%
Chabay et al. 2008	176	91	51,7%
Montalbán et al.2000	110	59	53,6%
Ambinder et al. 1993	39	21	53,9%
Chabay et al. 2008	111	60	54,1%
Weinreb et al. 1992	74	37	54,1%

Cont/ Tabela 5

	Nº de pacientes estudados	Nº de pacientes positivos	% EBV
Kanavaros et al. 1994	22	12	57,1%
Audouin et al. 2010	41	26	63,4%
Vassalo et al. 2001	78	50	64,1%
Chan et al. 1995	23	15	65,2%
Weinreb et al. 1996	48	32	66,7%**
Zarate-Osorno et al. 1995	27	18	66,7%
Pinto et al. 2006	37	25	67,6%
Engel et al. 2000	47	32	68,1%
Quintanilla-Martinez et al. 1995	50	35	69,4%
Naresh et al. 2000	110	86	78,2%
Zhao et al. 2008	60	51	85,0%
Chang et al. 2005(LHc)	41	38	92,7%
Chang et al. 2005(todos LH)	44	41	93,2%
Weinreb et al. 1996	53	53	100,0%*

^{*} Em crianças ** Em adultos

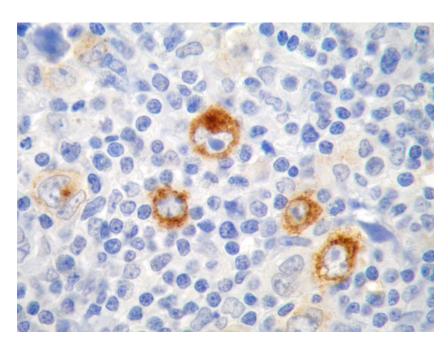


Figura 13 - Linfoma de Hodgkin clássico LMP-1+ (1000x, Caso 43)

As razões para uma taxa significante menor de EBV associado ao LHc na Europa e nas populações dos países desenvolvidos do mundo ocidental, em contraste com o que acontece nos países subdesenvolvidos e em desenvolvimento, são enigmáticas e complexas. Pode-se especular que o baixo status sócio-econômico em países subdesenvolvidos poderia ser responsabilizado por uma imunodepressão crônica atribuída à subnutrição, um conceito que poderia explicar o marcado aumento da infecção pelo EBV na população pediátrica destes países. Imunodepressão crônica devido a desordens auto-imunes, infecção pelo HIV ou estado pós-transplante também estão correlacionados a um aumento da infecção pelo EBV no LHc. Contudo, várias condições predisponentes e interações entre o vírus e o hospedeiro, até o momento, desconhecidas, parecem ser responsáveis pelas taxas de associação geograficamente diferentes do EBV, no LHc (KRUGMANN et al. 2003).

1.4.5 p53

O gene p53 está localizado no braço curto do cromossomo 17 e tem sido descrito como um gene supressor de tumor. Este gene produz a proteína p53, uma fosfoproteína de ligação ao DNA nuclear de 53Kd (LEVINE et al. 1992; GUPTA et al. 1992). Esta proteína, além de funcionar como um fator de transcrição em genes cruciais (STEELE et al. 1998), também inibe a replicação do DNA e é uma molécula controladora do ponto de checagem para progressão do ciclo celular de G1 para fase S e também de G2 para M (MILNER 1997; STEELE 1998). É através destes mecanismos gerais que ela controla a proliferação celular. A proteína p53 também está envolvida na regulação da apoptose, embora caminhos independentes desta

proteína também tenham sido identificados (AMUNDSON et al. 1998). Mutações no gene p53 frequentemente promovem um aumento do nível de expressão da proteína p53, estabilizando-a com uma consequente mudança conformacional. Além disso, vários estudos têm demonstrado que a mutação no gene p53 causa prejuízo na transativação por ela mediada. Este achado sugere que uma mutação no gene p53 pode ser o fator chave na resistência a apoptose (MAGGIO et al. 2001).

A atividade supressora da proteína p53 selvagem permite o reparo do DNA em células lesionadas e evita, assim, a apoptose. Deleções ou mutações no gene p53 estão classicamente associadas com desenvolvimento tumoral, assim, as mutações no gene p53 acabam por conduzir a uma perda da função supressiva, acelerando a gênese tumoral (LEVINE et al. 1991).

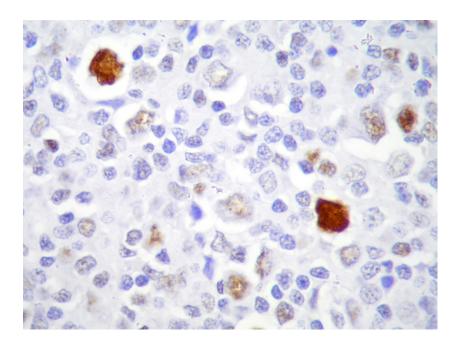
A inativação da p53 pode causar um incremento na taxa de proliferação, alta instabilidade genômica e perda de importantes pontos de checagem do ciclo celular, (KIRSCH e KASTAN 1998) permitindo, assim, que a célula escape para o caminho da transformação maligna. Em algumas condições, a perda da função da p53 pode resultar em resistência a apoptose, um dos mecanismos pensados para explicar a falha em responder aos danos ao DNA (AMUNDSON et al. 1998).

A proteína p53 mutada acaba por substituir a selvagem que está presente intracelularmente em baixas concentrações. Mutações no gene p53 são do tipo missense, ou seja, produzem uma mensagem genética legível apesar de apresentar um significado alterado, e ocorrem principalmente entre os exons 5 e 9 (THÜMPER et al. 1993; XERRI et al. 1994). Ou, segundo MONTESINOS-RONGEN et al. (1999), mais de 90% das mutações do gene p53 associadas a cânceres humanos ocorrem entre os exons 4 e 8.

A mutação ou depleção do oncogene p53 é uma das mais frequentementes lesões genômicas reportadas em vários tipos de cânceres, como o de pulmão, o de mama, o de pâncreas e cânceres linfóides, dentre eles o LH (AMINI et al. 2002; BARISIK et al. 2010). Contudo, apesar de as alterações no gene p53 serem as mais comuns alterações gênicas encontradas em cânceres humanos (>50%), (GUPTA et al. 1992; GARCIA et al. 2003) a incidência de mutações do p53 é significativamente menor no LH do que em outras neoplasias, (GUPTA et al. 1993; TRÜMPER 1993; CHEN et al. 1996; MONTESINOS-RONGEN et al. 1999) inclusive havendo um estudo que não evidenciou nenhuma mutação. (KÜPPER et al. 2001).

A hiper-expressão da proteína p53 tem sido amplamente detectada em LH, mesmo na ausência de mutações conhecidas no gene p53 (THÜMPER et al. 1993; XERRI et al. 1994, 1995; CHEN et al. 1996; NARESH et al. 1997).

A possibilidade de uma associação entre a infecção latente por EBV e mutações no gene p53 foi primeiramente avaliada por NEIDOBITEK et al. em 1993, contudo a sugestão de que a infecção latente do EBV pudesse ser uma possível causa para mutações no gene p53 nunca foi confirmada em estudos clínicos (PINHEIRO et al. 2007).


A proteína p53 mutada tem uma meia-vida média de 6h a 8h e nenhuma ação supressiva, sendo facilmente detectada por métodos de imunohistoquímica, enquanto que a proteína p53 selvagem tem uma curta meia-vida, de aproximadamente 20 minutos (LEVINE et al. 1991). Esta é indetectável usando técnicas de imunohistoquímica padrão (RODRIGUES et al. 1990). Pesquisas sobre a imunohistoquímica da p53 apóiam a idéia de que a positividade imunohistoquímica

está restrita aos tumores malignos, não sendo vista em tecidos normais (GUPTA et al. 1992).

Como as mutações no gene p53 em células H-RS são detectadas somente esporadicamente e podem não se correlacionar com a hiper-expressão da proteína p53 (NARESH et al. 1997; THÜMPER et al. 1993; XERRI et al. 1994, 1995; CHEN et al. 1996), a expressão da proteína p53 por coloração imunohistoquímica não é um perfeito substituto para avaliar o status mutacional do gene p53 (SUP et al. 2005).

Tabela 6 - Positividade do p53 no Linfoma de Hodgkin.

	Nº de pacientes estudados	Nº de pacientes positivos	% p53	Cutoffs
Sup et al. 2005	107	11	10,3%	≥10%
Garcia et al. 2003	265	41	15,5%	>80%
Montalbán et al. 2004	259	53	20,5%	>80%
Wang et al. 2003	62	14	22,6%	NI
Ohsawa et al. 2006	33	14	42,4%	Qualquer
Barisik et al. 2010	54	26	48,1%	≥10%
Pinheiro et al. 2007	51	27	52,9%	Qualquer
Smolewski et al. 2000	327	112	57,7%	≥20%
Gupta et al. 1992	50	36	72,0%	NI
Gupta et al. 1992	45	36	80,0%	NI
Amini et al. 2002	81	68	84,0%	Qualquer
Dinand et al. 2008	121	109	90,1%	Qualquer
Morente et al. 1997	140	130	92,9%	NI
Amini et al. 2002	81	80	98,8%	Qualquer
Maggio et al. 2001	67	67	100,0%	Qualquer

Figura 14 - Linfoma de Hodgkin clássico p53+ (1000x, Caso86)

1.4.6 Bcl-2

O Bcl-2 foi primeiramente identificado por seu envolvimento na t(14;18)(q32;q21) característica de linfomas foliculares (TSUJIMOTO et al. 1984). Ele é um importante regulador negativo da apoptose. A t(14;18) resulta em uma hiper-expressão da proteína Bcl-2 e representa o primeiro exemplo de oncogênese mediada por diminuição da morte celular. O mecanismo da função anti-apoptótica do Bcl-2 não é totalmente compreendido. Sabe-se que ele envolve diminuição do lançamento mitocondrial do citocromo-c, que é, ao invés, exigido pela ativação da procaspase-9 e iniciação da cascata apoptótica (ADAMS e CORY 1998).

A expressão de Bcl-2 por células H-RS pode prevenir a apoptose causada por uma ausência do receptor funcional de células B, e assim, explicar a oncogênese (RASSIDAKIS et al. 2002a).

Células H-RS sabidamente apresentam uma defeituosa regulação da apoptose (GARCIA et al. 2003). Sugere-se que a ativação do Bcl-2 seja um mecanismo crítico

envolvido na resistência à apoptose por células H-RS, pelo menos em alguns casos, como uma consequencia da capacidade de transformação da proteína LMP-1/EBV.

Em linfócitos B, o LMP-1 é capaz de fazer uma regulação para cima de um vasto número de genes celulares, incluindo o gene Bcl-2, inibidor da apoptose (HENDERSON et al. 1991; WANG et al. 1996). O LMP-1 pode imortalizar células B *in vitro*, potencialmente ao induzir o gene anti-apoptótico Bcl-2 (HENDERSON et al. 1991; GREGORY et al. 1991; WANG et al. 1996).

Tabela 7 - Positividade do Bcl-2 no Linfoma de Hodgkin.

	Nº de pacientes	Nº de pacientes positivos	% Bcl-2	Cutoffs
	estudados			
Montalbán et al. 2004	259	53	20,5%	>50%
Garcia et al. 2003	264	61	23,1%	>50%
Sup et al. 2005	107	28	26,2%	≥10%
Canioni et al. 2009	59	20	33,9%	≥10%
Smolewski et al. 2000	327	91	46,9%	≥10%
Montalbán et al. 2000	110	65	59,1%	>20%
Rassidakis et al. 2002a	707	433	61,2%	Qualquer
Morente et al. 1997	140	86	61,4%	>20%
Vassalo 2003	78	50	64,1%	Qualquer

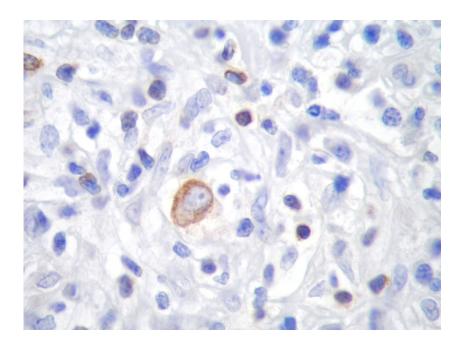
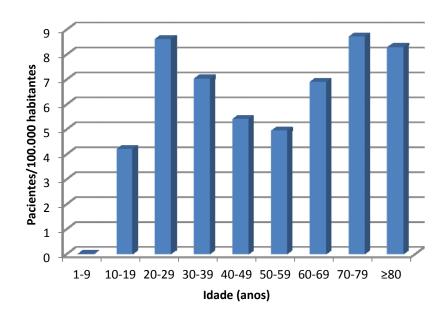


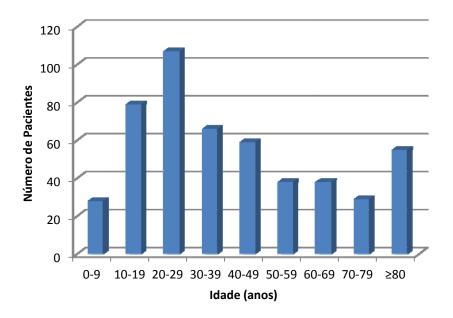
Figura 15 - Linfoma de Hodgkin clássico Bcl-2+ (1000x, Caso 38)


1.5 DIAGNÓSTICO

O diagnóstico do linfoma de Hodgkin é essencialmente histológico, sendo feito pelo achado de células RS típicas ou de H-RS ao lado de um estroma inflamatório em um estudo histopatológico de uma biópsia de linfonodo ou em outros órgãos, associados a um contexto clínico compatível. O exame histopatológico da biópsia do tecido ganglionar é considerado o padrão-ouro no diagnóstico.

1.6 APRESENTAÇÃO CLÍNICA

"A aparência clínica da doença de Hodgkin é de uma infecção" (COSTA 1984). O LHc pode desenvolver-se em qualquer idade, sendo encontrada uma curva


bimodal de incidência nos países desenvolvidos, como, por exemplo, nos EUA, onde o primeiro pico de incidência ocorre entre 20 e 39 anos, e o segundo pico após os 60 anos de idade.

Fonte: Adaptado de National Cancer Institute (NCI) (2009)

Figura 16 - Idade dos pacientes ao diagnóstico do LH (EUA - 2000/2008)

Nos países em desenvolvimento, como o Brasil, o LHc tende a apresentar apenas um pico de incidência (HUDSON e DONALSON 1997; KIM et al. 2003). Em crianças pequenas, o LH tende a acometer principalmente os meninos, (BITTENCOURT et al. 1987) em adultos jovens a incidência é equivalente entre os sexos, e, nos pacientes maiores de 50 anos a incidência é, também, predominantemente em homens (RAPAPORT 1990). Dados do INCA mostram que, no ano de 2000, o país apresentou apenas um pico de incidência, entre 10 e 29 anos. Comprovando a tendência de ser mais precoce do que o primeiro pico nos países desenvolvidos.

Fonte: Adaptado de Ministério da Saúde (2000)

Figura 17 - Idade dos pacientes ao diagnóstico (Brasil - 2000)

A apresentação clínica inicial mais frequente do LHc é a linfadenopatia cervical, (PATRÍCIO e DE SOUSA 1981; GAD EL-MAWLA et al. 1983; LEVY 1988; PITOMBEIRA et al. 1987; BITTENCOURT e BARBOSA 1992; ABREU 1996) geralmente unilateral e quase totalmente assintomática. PITOMBEIRA et al. (1987) cita que, em sua casuística de 105 crianças e adolescentes com idade de até 18 anos, encontrou, como localização do primeiro gânglio, a cadeia cervical (80 pacientes), a inguinal (11 pacientes), a axilar (5 pacientes), a abdominal (5 pacientes) e outras localizações (4 pacientes). ELGUI DE OLIVEIRA et al. (2002) ao estudar 96 pacientes, sendo 50 do estado do Ceará e 46 de São Paulo, também encontrou, como o primeiro sítio de linfonodopatia, o sítio cervical (49 pacientes). Não se sabe exatamente o motivo pelo qual há preferência do LHc pelo envolvimento dos linfonodos cervicais. Segundo ISAACSON et al (1992), fatores epiteliais

desconhecidos poderiam ser responsáveis pela incidência preferencial do LHc nos linfonodos cervicais. Raramente, uma linfadenomegalia axilar ou inguinal é a primeira manifestação no LHc (ABREU 1996; HUDSON e DONALSON 1997; YUNG e LINCH 2003). Cerca de 90% dos casos de LH, a primeira manifestação ocorre nos linfonodos, sendo, aproximadamente 75% na região cervical, 15% na região axilar e 10% na região inguinal. (ULTMANN e MORAN 1973) Estes gânglios acometidos pela doença apresentam uma consistência elástica, são algumas vezes aderentes entre si ou aos planos vizinhos e apresentam um caráter tipicamente assimétrico. Em alguns raros casos podem ser dolorosos, quando apresentam um crescimento muito rápido com distensão dolorosa da cápsula ou quando ocorre infiltração de nervos pelo tumor.

Podem-se observar manifestações sistêmicas como febre maior que 38°C por três dias consecutivos, sudorese noturna profusa e perda de peso superior a 10% do peso corporal basal nos últimos seis meses, (LISTER et al. 1989) que são denominados em seu conjunto de "sintomas B". A presença destes sintomas está relacionada com um pior prognóstico. A etiologia desta sintomatologia ainda permanece obscura, apesar dos intensos esforços para elucidá-la. Alguns autores sugerem que eles possam resultar da liberação de interleucina-1 (IL-1) e de fator de necrose tumoral (TNF) por macrófagos ativados reativos (RAPAPORT 1990). A febre está presente em aproximadamente 27% dos pacientes no momento do diagnóstico e é, geralmente, baixa e irregular (PATRÍCIO e DE SOUSA 1981) Os sintomas B ocorrem em torno de 25% dos pacientes com LHc (HUDSON e DONALSON 1997; YUNG e LINCH 2003).

Em uma revisão bibliográfica a nível nacional, foi encontrada uma grande variação dos dados sobre a presença de sintomas B. O mesmo variou de 27,8% (CHAVES 1972) a 72,5% (PINHEIRO et al. 2007).

Tabela 8 - Distribuição do Linfoma de Hodgkin quanto à presença de Sintomas B.

	Presentes	Ausentes	Não classificado	Total
Pinheiro et al. 2007	72,5% (36)	27,5% (15)	-	51
Giesta et al. 2009	64,9% (63)	35,1% (34)	-	97
Broecker Neto et al. 1986	59,7% (37)	40,3% (25)	-	62
Aldred et al. 2008	53,9% (123)	46,1% (115)	-	238
Vassalo et al. 2001, 2002, 2003	53,8% (42)	46,2% (36)	-	78
Pitombeira et al. 1987	33,3% (35)	64,8% (68)	1,9% (2)	105
Chaves 1972	27,8% (5)	72,2% (13)	-	18

Pode ser encontrado prurido generalizado acompanhado de escoriações, o qual é desprovido de significado prognóstico. Em aproximadamente 10% dos pacientes, há a referência a um sintoma paraneoplásico de algia nos linfonodos comprometidos, imediatamente após a ingestão de bebidas alcoólicas (SPECTOR et al. 1993). Apesar de ser um sintoma raro, é altamente específico para o LH, mas também não apresenta valor prognóstico. Apesar de extremamente raro, o paciente com LH pode apresentar como primeiro sinal da doença um quadro mais grave, como a obstrução da veia cava superior ou a compressão súbita da medula espinhal.

Na maioria dos casos de LH ocorre anergia cutânea resultante da depressão da imunidade celular. A base dessa disfunção imune ainda é desconhecida, mas tende a persistir até mesmo nos pacientes tratados com êxito, indicando que, provavelmente, a doença surge dentro do contexto de alguma anormalidade imunológica subjacente.

A esplenomegalia é um achado frequente, e se aceita que até 50% dos pacientes que tem o baço infiltrado pelo LH apresentem também infiltração hepática.

As células H-RS são encontradas em aproximadamente 5% das punções ou biópsias de medula óssea, em pacientes sabidamente com LH. O acometimento do sistema nervoso central é extremamente raro e ocorre somente nas fases mais avançadas da doença, diferentemente do que ocorre no LNH, quando o acometimento do sistema nervoso central é frequente e precoce.

A disseminação do LH é notavelmente previsível. A doença nodal precede a doença esplênica, a qual precede a doença hepática e esta costuma preceder o comprometimento medular e a doença extranodal. Essa disseminação ocorre predominantemente por via linfática e de maneira contígua, à exceção da doença volumosa ou avançada, quando ocorre disseminação hematogênica.

1.7 ESTADIAMENTO

Com o intuito de avaliar a extensão do LH e estabelecer um planejamento para o tratamento dos pacientes, tem-se, desde 1971, adotado sistemas de estadiamento da doença, sendo que o mais utilizado atualmente é a Classificação de Cotswolds, de 1989, a qual apresentou uma evolução da classificação de Ann Arbor.

Quadro 3 - Classificação de Cotswolds.

Estadio I: Envolvimento de um linfonodo isolado ou uma estrutura linfóide (ex. baço, timo, anel de Waldeyer).

Estadio II: Envolvimento de dois ou mais linfonodos no mesmo lado do diafragma (o mediastino é um sítio singular, linfonodos hilares são lateralizados). O número de sítios anatômicos deve ser indicado por um sufixo (ex. II₃).

Estadio III: Envolvimento de linfonodo ou de estruturas em ambos os lados do diafragma

III₁: com ou sem linfonodos do hilo esplênico, celíaco ou portal

III₂: com linfonodos para-aórtico, ilíaco ou mesentérico

Estadio IV: Envolvimento de sítio extranodal, designado por "E"

A: sem sintomas

B: febre, perda de peso e sudorese

X: extensão da doença

> 1/3 do diâmetro do mediastino

> 10 cm de extensão máxima da massa nodal

E: envolvimento de um sítio extranodal, contíguo ou próximo de um outro conhecido

EC: estadio clínico EP: estadio patológico

Fonte: LISTER et al. (1989)

O estadiamento do LH refere-se principalmente ao prognóstico, mas também influencia muito na quantificação e qualificação do tratamento a ser utilizado e, portanto, precisa ser cuidadosamente avaliado em cada paciente.

Em uma revisão bibliográfica nacional foi observado que, de um modo geral, ocorre um diagnóstico tardio do LHc no Brasil, com a maioria dos pacientes já encontrando-se em estadios avançados da doença ao diagnóstico.

Tabela 9 - Distribuição do Linfoma de Hodgkin entre os Estadios Clínicos.

	I	II	III	IV	NC	Total
Chaves 1972	2	6	6	1	-	15
	(13,3%)	(40%)	(40%)	(6,7%)		13
Chaves 1973	3	4	4	3	-	14
	(21,4%)	(28,6%)	(28,6%)	(21,4%)		14
Broecker Neto et al. 1986	6	15	27	14	-	62
	(9,7%)	(24,2%)	(43,5%)	(22,6%)		02
Bittencourt et al. 1987	7	7	9	16	4	43
	(18,0%)	(18,0%)	(23,0%)	(41,0%)		43
Pitombeira et al. 1987	26	35	25	17	2	105
	(24,8%)	(33,3%)	(23,8%)	(16,2%)	(1,9%)	103
Vassalo et al. 2001, 2002, 2003	6	17	29	20	-	78
	(7,7%)	(21,8%)	(37,2%)	(25,6%)		70
Pinheiro et al. 2007	3	14	16	18	-	51
	(5,8%)	(27,4%)	(31,3%)	(35,3%)		31
Giesta et al. 2009	7	43	23	24	-	97
	(7,2%)	(44,3%)	(23,7%)	(24,8%)		97

1.8 TRATAMENTO

O tratamento do LH é um dos grandes triunfos da medicina no século XX. Tornou-se um dos melhores exemplos de neoplasia curável, quando abordada corretamente. O LH é curável em mais de 90% dos casos (YUNG e LINCH 2003; DIEHL et al. 2004).

"A doença de Hodgkin era considerada praticamente incurável antes de 1960", (OLIVEIRA 1990) quando somente uma minoria dos pacientes com doença localizada e tratados com radioterapia poderia ser curada.

A moderna quimioterapia apareceu durante a Segunda Guerra Mundial, quando vários estudos foram iniciados entre os anos de 1942 e 1943, porém estes

estudos não foram publicados por questões de segurança. Naquela época, foi administrado um derivado do gás mostarda, o tri-B-cloroetamina hidroclorida.

Em 1965, DeVita e colaboradores, no Instituto Nacional do Câncer (EUA) introduziram o primeiro esquema poliquimioterápico altamente efetivo, denominado MOPP (Meclaretamina, Vincristina, Procarbazina e Prednisona) (DEVITA et al. 1970). Nos últimos anos, vários outros esquemas de poliquimioterapia estão sendo estudados, com ótimas respostas terapêuticas.

No Hospital Universitário Walter Cantídio da Universidade Federal do Ceará - UFC e no Hospital Haroldo Juaçaba/Instituto do Câncer do Ceará - ICC é utilizado, de primeira linha, o esquema de poliquimioterapia ABVD (Doxrubicina, Bleomicina, Vinblastina e Dacarbazina), desde 1996.

Nos casos refratários e nas recidivas, os pacientes têm diferentes opções de tratamento, culminando com o transplante autólogo de células-tronco. Estratégias futuras de tratamento, em fase experimental, relatam drogas citotóxicas como gemcitabine, análogo da cytarabina e imunoterapia utilizando o L_T citotóxico LMP seletivo com célula dendrítica autóloga. (YUNG e LINCH 2003)

Observa-se que a grande eficácia do atual tratamento quimioterápico para o LHc tem promovido uma substancial modificação no prognóstico dessa neoplasia, entretanto, ainda existe um número considerável de pacientes que não respondem satisfatoriamente ao tratamento padronizado, os quais são candidatos a uma segunda abordagem terapêutica com tratamentos alternativos. Há uma tendência de se tentar encontrar fatores que possam contribuir para uma padronização de um escalonamento da intensidade do tratamento, personalizando-o, para evitar o super

ou o sub-tratamento, e também tentar antever que pacientes necessitarão de uma maior dose de quimioterapia, ou que serão candidatos a um tratamento alternativo.

1.9 PROGNÓSTICO

A Organização Européia para Pesquisa e Tratamento do Câncer (EORTC) identificou vários fatores prognósticos para doença localizada, estratificando o tratamento.

Quadro 4 - Fatores de Risco em Doença Localizada, segundo EORTC.

FAVORÁVEL	DESFAVORÁVEL
Paciente deve ter todos estes fatores:	Paciente tem algum destes fatores:
Estadio clínico I ou II	Estadio clínico II com envolvimento de
Máximo de 3 áreas nodais envolvidas	no mínimo 4 áreas nodais
• Idade < 50 anos	• Idade > 50 anos
• VHS < 50 mm/h sem sintomas B ou	• VHS > 50 mm/h sem sintomas B ou
< 30mm/h com sintomas B	> 30mm/h com sintomas B
• Mediastino – diâmetro torácico < 0,35	• Mediastino – diâmetro torácico > 0,35

Fonte: YUNG e LINCH (2003)

Para doença avançada, pode-se utilizar o Índice de Hasenclever ou Escore Internacional de Prognóstico (IPS), que cita como estando envolvidos com pior prognóstico sete fatores: (HASENCLEVER et al. 1998)

- Albumina sérica < 4g/dL
- Hemoglobina < 10,5g/dL
- Sexo masculino
- Estadio IV

- Idade \geq 45 anos
- Leucocitose $\geq 15.000/\text{mm}^3$
- Linfopenia < 600/mm³ ou < 8% dos leucócitos totais

1.9.1 Refratariedade

Desde a década de sessenta do século passado, vários pesquisadores têm analisado a refratariedade do LHc ao tratamento inicial, sendo que a taxa de refratariedade encontrada é muito ampla, variando de 3,3% GAUSE et al. (1991) a 42,5% GOBBI et al. (1981).

Tabela 10 - Frequência de Refratariedade do LH ao Tratamento Inicial.

	Nº de pacientes estudados	Nº de pacientes refratários	% Refratariedade
Gause et al. 1991	90	03	3,3%
Specht e Nissen 1989	506	22	4,3%
Nadali et al. 1994	115	07	6,1%
Donnelly et al. 1999	181	13	7,2%
Axdorph 2000	145	20	13,8%
Morente et al. 1997	140	29	20,7%
Garcia et al. 1993	137	29	21,2%
Smolewki et al. 2000	327	70	21,4%
Touhami et al. 1991	155	35	22,6%
Montalbán et al. 2000	110	25	22,7%
Asano et al. 2006	174	40	23,0%
Dienstbier 1989	167	40	24,0%
Glavina-Durdov et al. 2001	100	26	26,0%
Muller et al. 1992	157	41	26,1%
Norberg et al. 1991	133	35	26,3%
Pinheiro et al. 2007	45	12	26,7%
Giesta et al. 2009	97	26	26,8%
Enblad et al. 1993	154	42	27,3%
Dienstbier 1986	371	104	27,5%
Hancock et al. 1982	181	56	30,9%
Löeffler et al. 1992	137	51	37,2%
Specht e Nissen 1988	99	39	39,4%
Gobbi et al. 1981	492	209	42,5%

1.9.2 Fatores Preditivos quanto à Refratariedade

Observa-se que há um grande interesse no estudo sobre que marcadores imunohistoquímicos estariam envolvidos na refratariedade do LHc ao tratamento inicial. MORENTE et al. (1997) e MONTALBÁN et al. (2000), não encontraram relação entre a positividade do marcador imunohistoquímico CD15 com a refratariedade do LH.

GIESTA et al. (2009) encontrou que pacientes que apresentavam positividade para o CD20 apresentaram mais refratariedade ao tratamento inicial, enquanto que DONNELLY et al. (1999) encontrou o oposto, um efeito benéfico do CD20.

O efeito preditivo do LMP-1 foi estudado por quatro pesquisadores, MONTALBÁN et al. (2000) e GLAVINA-DURDOV et al. (2001), encontraram que a positividade do LMP-1 está relacionada a uma menor refratariedade, enquanto que MORENTE et al. (1997) e AXDORPH et al. (1999) não encontraram relação entre o LMP-1 e a refratariedade.

SMOLEWSKI et al. (2000) ao pesquisar o efeito preditivo do p53, encontrou que apenas com um ponto de corte de positividade maior do que 25% das células tumorais positivas para o marcador é que o p53 apresentou efeito preditivo de maior refratariedade ao tratamento inicial. MORENTE et al. (1997), MONTALBÁN et al. (2000), e PINHEIRO et al. (2007), não encontraram efeito preditivo entre o p53 e a refratariedade.

Em relação ao Bcl-2, MORENTE et al. (1997) e MONTALBÁN et al. (2000) não encontraram efeito preditivo entre o Bcl-2 e a refratariedade.

1.9.3 Recidiva

Mais de 30% dos pacientes com LHc apresentam recidiva do LH e, eventualmente, morrem da doença ou de complicações do tratamento (RASSIDAKIS et al. 2002a).

Tabela 11 - Frequência de Recidiva do Linfoma de Hodgkin.

	Nº de pacientes	Nº de pacientes com recidiva	% Recidivas
	estudados		
Nadali et al. 1994	108	14	13,0%
Molot et al. 1994	46	6	13,0%
Howard,1986	100	15	15,0%
Morente et al. 1997	111	20	18,0%
Löeffler et al. 1988	104	21	20,2%
Enblad et al. 1993	112	24	21,4%
Dienstbier et al. 1986	267	58	21,7%
De Mascarel et al. 1990	563	132	24,0%
Dienstbier et al. 1989	127	31	24,4%
Krugmann et al. 2003	119	32	26,9%
Tzankov et al. 2003b	119	32	26,9%
Garcia et al. 1993	108	32	29,6%
Donnelly et al. 1999	181	54	29,8%
Axdorph et al. 2000	125	38	30,4%
Norberg et al. 1991	98	32	32,7%
Smolewki et al. 2000	257	87	33,9%
Specht e Nissen1989	484	167	34,5%
Aldred et al. 2008	238	94	39,5%
Muller et al. 1992	126	54	42,9%
Specht e Nissen 1988	60	42	70,0%

1.9.4 Fatores Prognósticos quanto a Recidiva do LH

Algumas pesquisas estão sendo realizadas com o intuito de tentar correlacionar a positividade de marcadores imunohistoquímicos com a recidiva do LH. Pode-se citar que VON WASIELEWSKI et al. (1997a) encontrou que a

presença do marcador CD15 está relacionada a uma menor taxa de recidiva do LH, enquanto que De MASCAREL et al. (1990) não encontrou relação entre o CD15 e a recidiva.

Ao estudar a relação entre a recidiva do LH com a presença do marcador CD20 nas células tumorais, TZANKOV et al. (2003b) encontrou que sua presença apresenta um efeito protetor.

KRUGMANN et al. (2003) estudou a recidiva do LH em relação ao LMP-1 e encontrou que a presença deste não se relaciona com a recidiva.

Após extensa pesquisa bibliográfica foram encontrados trabalhos que tentaram relacionar o desfecho do LH com a presença do marcador Bcl-2 ou p53, contudo, não foi encontrado nenhum trabalho que tentasse relacionar, especificamente, a recidiva do LH com a presença do marcador Bcl-2 ou p53.

1.9.5 Fatores Prognósticos quanto a Sobrevida

Já em 1954, FINKBEINER et al. era grande o interesse em tentar encontrar fatores de prognóstico para a sobrevida dos pacientes com LH realizou um grande estudo com 1000 pacientes. Estes pacientes foram separados em dois grupos, um com um curso extremamente rápido (total de duração da doença, entre os primeiros sintomas e o óbito, menor ou igual a seis meses), e outro com um curso da doença extremamente indolente (sobrevida maior que 10 anos). Ao comparar estes dois grupos, FINKBEINER et al. (1954) concluiu que a idade do paciente, o sexo, a raça, a cor, o estado civil, a história familiar, a história patológica pregressa, a extensão da doença, a dosagem da hemoglobina, dos leucócitos, dos linfócitos e dos eosinófilos não apresentaram relação de prognóstico com a sobrevida.

Em HASENCLEVER et al. (1998), após analisar 4.695 pacientes com LH, criou um escore de prognóstico para pacientes com LH avançado. Neste escore existem sete fatores de importância, que são: albumina sérica menor que 4,0mg/dL, hemoglobina menor que 10,5g/dL, sexo masculino, idade maior ou igual a 45 anos, estadio clínico IV, leucocitose maior ou igual a 15.000 células/mm³, e linfopenia menor que 600 células/mm³ ou menor que 8% do número total de leucócitos.

Atualmente, a procura por novos fatores de prognóstico está voltada principalmente para os marcadores imunohistoquímicos. Alguns pesquisadores encontraram que a presença do CD15 está relacionada com aumento na sobrevida dos pacientes (PETRELLA et al. 1989; VASSALO et al. 2003; DINAND et al. 2008). VON WASIELEWSKI et al. (1997a) encontrou uma menor sobrevida, e outros pesquisadores (MORENTE et al. 1997; MONTALBÁN et al. 2000; BARROS et al. 2008; FU et al. 2008) não encontraram alteração na sobrevida.

PORTLOCK et al. (2004) encontrou que pacientes que apresentavam células tumorais positivas para o CD20 apresentaram uma diminuição na sobrevida global, enquanto que a grande maioria dos pesquisadores (MOLOT et al. 1994; DONELLY 1999; VASSALO et al. 2002; TZANKOV et al. 2003b; ALDRED et al. 2008; FU et al. 2008) não encontrou alteração na sobrevida, salvo para alguns subtipos selecionados de pacientes.

Vários pesquisadores estudaram uma possível relação de prognóstico entre a positividade do LMP-1 e a sobrevida dos pacientes. Alguns (MORENTE et al. 1997; ENGEL et al. 2000; MONTALBÁN et al. 2000; NARESH et al. 2000; VASSALO et al. 2001, 2003) encontraram um aumento na sobrevida, outros (STARK et al. 2002; CLAVIEZ et al. 2005, JARRETT et al. 2005) uma diminuição e a maioria (FELLBAUM et al. 1992; ARMSTRONG et al. 1994; ENBLAD et al. 1997;

ENBLAD et al. 1999; AXDORPH et al. 1999; MURRAY et al. 1999; CLARKE et al. 2001; GLAVINA-DURDOV et al. 2001; GARCIA et al. 2003; HERLING et al. 2003; KRUGMANN et al. 2003; FLAVELL et al. 2003; KEEGAN et al. 2005; ASANO et al. 2006; CHABAY et al. 2008; ALDRED et al. 2008) não encontrou uma relação entre a sobrevida e o LMP-1.

A maioria dos pesquisadores não encontrou relação entre o p53 e a sobrevida dos pacientes (XERRI et al. 1994; MORENTE et al. 1997; MONTALBÁN et al. 2000; SUP et al. 2005; PINHEIRO et al. 2007; BARISIK et al. 2010), enquanto que DINAND et al. (2008) encontrou um aumento na sobrevida e SMOLEWSKI et al. (2000) e GARCIA et al. (2003) encontraram uma diminuição da sobrevida.

A controvérsia sobre o marcador Bcl-2 e a sobrevida também existe. VASSALO et al. (2003) encontrou um aumento na sobrevida. Alguns pesquisadores SMOLEWSKI et al. (2000), RASSIDAKIS et al. (2002a) GARCIA et al. (2003) e SUP et al. (2005) encontraram uma diminuição na sobrevida e MORENTE et al. (1997) e MONTALBÁN et al. (2000) não encontraram relação com a sobrevida.

1.9.6 Fatores Prognósticos quanto à Sobrevida Livre de Doença

Alguns pesquisadores têm investigado imunomarcadores no intuito de encontrar fatores que possam ser encarados como de prognóstico quanto à sobrevida livre da doença em pacientes com linfoma de Hodgkin. Como exemplos pode-se citar: PETRELLA et al. (1989) e DINAND et al. (2008) encontraram que a positividade do imunomarcador CD15 está relacionada a um aumento da sobrevida livre de doença. Contudo, alguns pesquisadores ENBLAD et al. (1993), MONTALBÁN et al. (2000), BARROS et al. (2008) e FU et al. (2008) não conseguiram confirmar este achado.

DONNELLY et al. (1999) e PORTLOCK et al. (2004) ao estudar a relação entre a presença do CD20 e a sobrevida livre de doença encontraram que sua presença estava relacionada a um pior prognóstico. TZANKOV et al. (2003b) encontrou que a sobrevida livre de doença foi maior apenas para os pacientes com diagnóstico mais antigo, não encontrando a mesma relação com os pacientes com diagnóstico mais recente. Vários pesquisadores (ENBLAD et al. 1993; MOLOT et al. 1994; RASSIDAKIS et al. 2002b; FU et al. 2008; ALDRED et al. 2008) também não encontraram relação entre a sobrevida livre de doença e o CD20.

A grande maioria dos pesquisadores não encontrou relação entre a positividade do LMP-1 e a sobrevida livre de doença (VESTLEV et al. 1992; ARMSTRONG et al. 1994; ENBLAD et al. 1997 e 1999; MURRAY et al. 1999; ENGEL et al. 2000; GLAVINA-DURDOV et al. 2001; FLAVELL et al. 2003; KRUGMANN et al. 2003; HERLING et al. 2003; CLAVIEZ et al. 2005; ALDRED et al. 2008; CHABAY et al. 2008). Contudo, MONTALBÁN et al. (2000) e NARESH et al. (2000) encontraram um aumento na sobrevida livre de doença.

Em relação ao p53, o resultado foi mais controverso. DINAND et al. (2008) encontrou que a presença do p53 está relacionada com aumento da sobrevida livre de doença, SMOLEWSKI et al. (2000), com diminuição da sobrevida livre de doença e XERRI et al. (1994), MONTALBÁN et al. (2000) e SUP et al. (2005) não encontraram relação.

Pesquisas envolvendo o Bcl-2 foram feitas por SMOLEWSKI et al. (2000) RASSIDAKIS et al. (2002a) e SUP et al. (2005) e eles encontraram que o Bcl-2 está relacionado com a diminuição da sobrevida livre de doença. Apenas MONTALBÁN et al. (2000) não encontrou relação entre estas variáveis.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Avaliar a importância preditiva e prognóstica dos marcadores imunohistoquímicos CD15, CD20, LMP-1, p53 e Bcl-2, nos pacientes com linfoma de Hodgkin clássico.

2.2 OBJETIVOS ESPECÍFICOS

Classificar os pacientes quanto à frequência da presença dos marcadores imunohistoquímicos CD15, CD20, LMP-1, p53 e Bcl-2 e suas associações com refratariedade ao tratamento inicial com o esquema ABVD, recidiva, sobrevida câncer específica e tempo livre de doença.

3 JUSTIFICATIVA

Existem trabalhos tentando relacionar o valor preditivo e prognóstico de alguns marcadores imunohistoquímicos no LHc. Contudo, eles apresentam resultados conflitantes. A grande maioria dos estudos não padronizou o tratamento inicial, o que causa uma grande dificuldade para analisar o valor preditivo do tratamento. Muitos apresentam um relativamente pequeno número de pacientes na análise e com um período de acompanhado curto. Alguns incluiram em suas casuísticas aqueles pacientes com linfoma de Hodgkin predominância linfocítica nodular, o qual, atualmente é considerado um linfoma de células B de baixo grau que apresenta características clínico-patológicas e imunohistoquímicas diferentes do LHc. Atualmente, ainda não há uma padronização total da técnica de imunohistoquímica utilizada e nem do critério de positividade para os marcadores em estudo. Todas estas variáveis acabam por dificultar uma comparação dos resultados encontrados pelos estudos. Este trabalho visa trazer uma proposta de padronização metodológica, para que os dados sejam homogeneizados e comparáveis entre si, além de ser um dos poucos estudos nacionais e o único no Nordeste do Brasil.

4 MATERIAL E MÉTODOS

Este trabalho consiste em uma análise estatística retrospectiva e prospectiva dos pacientes com LHc com diagnóstico histopatológico firmado entre 01 de janeiro de 2000 e 31 de dezembro de 2009. A análise foi retrospectiva de 01 de janeiro de 2000 a 31 de dezembro de 2003, e prospectiva de 01 de janeiro de 2004 a 30 de novembro de 2011, quando se parou o acompanhamento.

4.1 PACIENTES

Foram selecionados todos os pacientes com diagnóstico histopatológico de LHc que iniciaram acompanhamento no Hospital Universitário Walter Cantídio – HUWC da Universidade Federal do Ceará – UFC ou no Hospital Haroldo Juaçaba/Instituto do Câncer do Ceará – ICC, entre 01 de janeiro de 2000 e 31 de dezembro de 2009.

Os critérios de inclusão no estudo foram:

- * Receber o tratamento inicial preconizado com o esquema ABVD.
- * Possuir dados precisos no prontuário.
- * Apresentar positividade para o marcador imunohistoquímico CD30.
- * Apresentar sorologia negativa para o vírus da imunodeficiência humana (HIV).

Um total de 273 pacientes permaneceu na pesquisa. Eles foram imunofenotipados para os marcadores imunohistoquímicos CD15, CD20, CD30,

LMP-1, p-53 e Bcl-2. Foram realizados os seguintes exames ao diagnóstico: hemograma completo, plaquetometria, VHS, glicemia de jejum, fosfatase alcalina sérica, desidrogenase lática sérica, biopsia de medula óssea e sorologia para HIV, HTLV 1 e 2, HBV, HCV e para a sífilis (VDRL).

Ao término do tratamento os pacientes foram classificados, quanto à resposta ao tratamento pelos seguintes critérios:

- Remissão completa: definida como o desaparecimento completo de todos os gânglios inicialmente patológicos, normalização de imagens tomográficas observadas ao diagnóstico e desaparecimento dos sinais clínicos, por um período mínimo de quatro semanas.
- Refratariedade: definida como a persistência de gânglios residuais ou de imagens tomográficas suspeitas ou de positividade na cintilografia com Gálio 67 e de sinais clínicos de atividade da doença após o término do tratamento inicial com o esquema quimioterápico ABVD, ou o aparecimento de novos gânglios comprometidos, previamente livres de doença, ou piora das imagens tomográficas ou de positividade na cintilografia com Gálio 67 e piora dos sinais clínicos de atividade da doença durante o tratamento inicial com o esquema ABVD.
- Recidiva: definida como o aparecimento, em um paciente em remissão completa, de sinais clínicos e/ou tomográficos de LHc.
- Sobrevida livre da doença: definida como o intervalo de tempo entre o final do tratamento e o primeiro evento de acompanhamento: morte por qualquer causa, recidiva da doença ou perda de acompanhamento clínico.

- Sobrevida câncer específica: definida como o intervalo de tempo entre o final do tratamento e a morte do paciente em decorrência da evolução da doença ou de complicações do tratamento.
- Tempo de acompanhamento do paciente: definido como o intervalo de tempo entre o diagnóstico de LHc até o último registro de acompanhamento do paciente.

4.2 DIAGNÓSTICO HISTOPATOLÓGICO

O exame histopatológico de todas as biópsias foi realizado no Hospital Haroldo Juaçaba/Instituto do Câncer do Ceará (Fortaleza) e no Hospital A. C. Camargo (São Paulo) por dois conceituados hematopatologistas, de modo que eles não tiveram acesso aos dados clínico-laboratoriais ou aos dados de identificação dos pacientes. O diagnóstico histopatológico dos casos foi estabelecido pelo encontro da célula RS ou suas variantes neoplásicas em meio a um substrato celular característico e alterações estromais, utilizando critérios morfológicos. Foi adotada a classificação de linfomas da OMS (ANAGNOSTOPOULOS et al. 2008).

4.3 ESTUDO IMUNOHISTOQUÍMICO

As amostras de biópsia deste estudo foram submetidas aos marcadores imunohistoquímicos CD15, CD20 e CD30, correspondendo ao padrão de marcadores linfóides para LHc descritos na literatura (POPPEMA 1992; SAID 1992) e a outros,

quando necessários para a confirmação do diagnóstico. Além destes, foram submetidas aos marcadores LMP-1, p-53 e Bcl-2.

A técnica imunohistoquímica empregada foi:

• Desparafinização das lâminas deixadas por 24 horas em estufa a 60°C:

Xilol a 60°C, por 20 minutos.

Xilol à temperatura ambiente, por 20 minutos.

Etanol a 100%, por 30 segundos.

Etanol a 85%, por 30 segundos.

Etanol a 70%, por 30 segundos.

- Lavar as lâminas em água corrente e destilada.
- Ferver a solução tampão citrato 10mM, pH 6,0 em panela de pressão (Tramontina®, Solar, Rapid Express) destampada. Mergulhar as lâminas e lacrar a panela com a válvula de segurança na posição 2. Após atingir a pressão total, contar 3 minutos. Voltar a válvula de segurança para posição 2. Deixar a panela fechada sob água corrente até a despressurização total. Destampar a panela com as lâminas e lavar as lâminas em água corrente e destilada.
- Proceder ao bloqueio da peroxidase endógena com H₂O₂ a 3%, (água oxigenada 10 vol) com 4 trocas de 5 minutos cada. Lavar em água corrente e destilada. Lavar com solução salina tamponada com fosfatos (PBS-phosphate buffered saline) 10mM, pH 7,4 por 5 minutos.
- Incubar as lâminas com o anticorpo primário diluído em título préestabelecido, conforme tabela abaixo, em tampão PBS contendo albumina

bovina (BSA) a 1% (Sigma, A9647, EUA) e azida sódica (NaN₃) a 0,1%, por 30 min a 37°C e por 18 horas a 4°C em câmara úmida.

Quadro 5 - Anticorpos Utilizados.

Antícorpos	Clones	Títulos	Fabricantes
CD15	C3D1	1:100	Dako, cat# M0733
CD20cy	L26	1:1000	Dako, cat# M0755
CD30	BerH2	1:50	Dako, cat# M0751
LMP1	CS1 - 4	1:200	Dako, cat# M0897
p53	DO-7	1:100	Dako, cat# M7001,
Bcl2	124	1:400	Dako, cat# M0887

- Lavar em tampão PBS com 3 trocas de 3 minutos cada.
- Incubar por 30 min a 37° C com Advance[™] HRP Link (Dako cod# K4068,
 Carpinteria, CA, EUA).
- Lavar com tampão PBS com 3 trocas de 3 minutos cada.
- Incubar com o Advance[™] HRP Enzyme por 30 minutos a 37° C.
- Lavar em tampão PBS com 3 trocas de 3 minutos cada.
- Incubar as lâminas em solução substrato: 100mg de 3,3' Diaminobenzidine Tetrahydrochloride (DAB) (Sigma, D-5637, EUA); 1mL de Dimetilsulfóxido (DMSO); 1mL de H₂O₂ a 6% (água oxigenada 20 vol); 100mL de PBS; por 5 minutos a 37°C, ao abrigo da luz.
- Observar ao microscópio, nas lâminas controles, o desenvolvimento de precipitado castanho dourado, como produto final da reação.
- Lavar em água corrente e água destilada por 3 minutos.
- Contracorar com Hematoxilina de Harris por 1 minuto.

- Lavar bem em água corrente e destilada.
- Imergir 2 vezes em água amoniacal (solução de hidróxido de amônio a 0,5%),
 lavando em seguida em água corrente e destilada.
- Desidratar as lâminas em:

Etanol a 80%, por 30 segundos.

Etanol a 95%, por 30 segundos.

Etanol a 100% 2 vezes, por 30 segundos cada.

Xilol 4 vezes, por 30 segundos cada.

• Montagem das lâminas em Entellan neu (Merck, 1.07961, Alemanha).

Controles da técnica de imunohistoquímica:

Controle positivo: Cortes histológicos de um caso com diagnóstico morfológico e imunofenotipagem positiva para LHc em experimentos anteriores.

Controle negativo: Realizado com a retirada da reação do anticorpo primário.

4.4 CRITÉRIO DE POSITIVIDADE PARA OS MARCADORES IMUNOHISTOQUÍMICOS

O critério de positividade para os marcadores imunohistoquímicos foi a presença de, pelo menos, uma célula de Reed-Sternberg ou suas variantes positiva para o marcador em estudo. Foi utilizado este critério baseado no pressuposto de que mesmo algumas células positivas para um determinado marcador podem sobreviver a apoptose induzida pela quimioterapia e radioterapia e podem influenciar no valor preditivo ao tratamento. Assim, evitou-se escolher qualquer percentagem arbitrária de células H-RS positivas como um corte para definir a expressão de positividade.

5 CONSIDERAÇÕES ÉTICAS

O estudo foi apresentado ao Comitê de Ética em Pesquisa do Instituto do Câncer do Ceará dentro das normas que regulamentam a pesquisa em Seres Humanos do Conselho Nacional de Saúde, de acordo com a Resolução nº 196 de 10 de outubro de 1996 e Resolução nº 251 de 07 de agosto de 1997, publicadas no Diário Oficial da União, respectivamente em 16 de outubro de 1996 e 23 de setembro de 1997, merecendo aprovação, sem pendências.

6 ANÁLISES ESTATÍSTICAS

Os dados foram digitados em um banco utilizando o programa Microsoft Office Excel 2007 e checados por erros de digitação. Na análise estatística univariada e gráficos correspondentes foi utilizado o software GraphPrism v5.0. A análise estatística multivariada foi realizada no software SPSS Statistics v19.0. Para verificar os fatores de risco independentes para refratariedade ao tratamento, primeiro realizou-se a análise univariada e aquelas variáveis cujo nível descritivo do teste foi de até 0.20 foram selecionadas para a análise multivariada. Na análise univariada, as variáveis categóricas foram comparadas de acordo com a refratariedade através do teste exato de Fisher. As variáveis VHS (velocidade de hemossedimentação) e LDH (desidrogenase láctica) foram convertidas em variáveis categóricas dicotômicas através da análise da curva ROC. Para tanto, usou-se o status de refratariedade (não e sim) como fator discriminante na curva. Na análise multivariada, empregou-se a regressão logística com análise exploratória dos dados para a identificação dos fatores de risco independentes para refratariedade ao tratamento. A técnica de modelagem utilizada foi a do tipo stepwise forward selection. Para verificar o valor prognóstico dos marcadores imunohistoquímicos, realizou-se a regressão pelo modelo de riscos proporcionais de Cox com análise não-exploratória. O intervalo de tempo considerado para as análises foi o tempo transcorrido entre o início do tratamento e a última informação disponível do paciente. As variáveis estudadas foram: recidiva da doença, sobrevida câncer específica e sobrevida livre de doença. Foram selecionadas duas variáveis de ajuste mandatório e uma variável de interesse.

As variáveis de ajuste mandatório escolhidas foram: a refratariedade ao tratamento e o escore internacional de prognóstico, HASENCLEVER et al. (1998) a saber: gênero (masculino), taxa de hemoglobina (<10,5g/dL), albumina sérica (<4,0g/dL), estadio clínico (IV), idade (≥45 anos), contagem de leucócitos (≥15.000/mm³) e contagem de linfócitos (<600/mm³ ou <8% em relação ao total de leucócitos). O escore foi estratificado em duas categorias (até 1 fator *versus* 2 fatores ou mais), havendo diferença estatisticamente significativa entre as mesmas em termos de risco para óbito (HR bruta = 6,2; IC95%: 2,4 − 16,1). As expressões dos marcadores CD15, CD20, LMP-1, p53 e Bcl-2 foram as variáveis de interesse, sendo as mesmas testadas em modelos separados. O nível de significância considerado para as análises foi 5%.

7 RESULTADOS

Dos 273 pacientes da pesquisa, 149 (54,6%) eram do sexo masculino e 124 (45,4%) do sexo feminino, apresentando uma relação de 1:1,2.

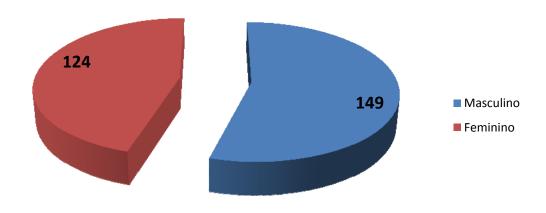


Figura 18 - Sexo dos pacientes

A idade dos pacientes, ao diagnóstico, variou de três a 85 anos, com média de 29 anos e mediana de 25 anos. Verificou-se apenas um pico de incidência, o qual ocorreu entre 10 e 39 anos, com 212 pacientes (77,7%).

Figura 19 - Idade dos pacientes ao diagnóstico

Quanto ao subtipo histológico, 195 pacientes (71,4%) eram portadores de LHc subtipo esclerose nodular, 45 pacientes (16,5%) apresentaram o subtipo celularidade mista, 23 pacientes (8,4%) apresentaram o subtipo rico em linfócitos e 10 pacientes (3,7%) apresentaram o subtipo depleção linfocítica.

Figura 20 - Subtipo histológico do linfoma

Doze pacientes (4,4%) apresentavam-se, ao diagnóstico, em estadio clínico I da classificação de Cotswolds, 128 pacientes (46,9%) apresentavam-se em estadio clínico II, 76 pacientes (27,8%) em estadio clínico III e 57 pacientes (20,9%) em estadio clínico IV.

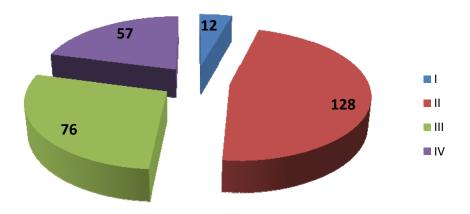


Figura 21 - Estadio clínico ao diagnóstico

Sintomas B estavam presentes em 151 pacientes (55,3%) e ausentes em 122 pacientes (44,7%).

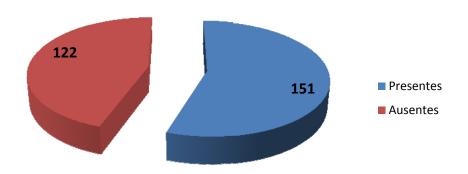


Figura 22 - Presença de sintomas B

Vinte e quatro pacientes (8,8%) apresentavam infiltração da medula óssea, ao diagnóstico.

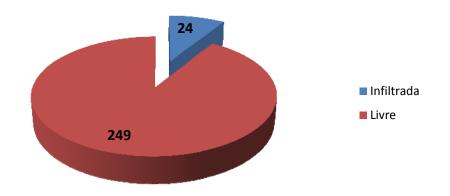


Figura 23 - Infiltração da medula óssea

A prevalência do marcador CD15 foi de 77,0% (208/270 pacientes), do CD20 foi de 18,7% (50/267 pacientes), do LMP-1 foi de 42,5% (51/120 pacientes), do p53 foi de 96,0% (96/100 pacientes) e do Bcl-2 foi de 22,1% (33/149 pacientes).

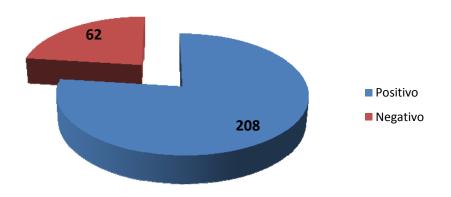


Figura 24 - Positividade do marcador CD15

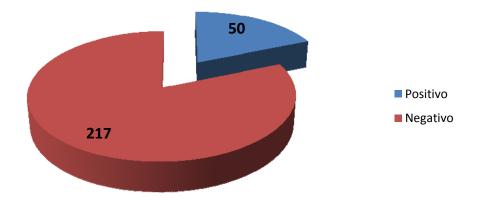
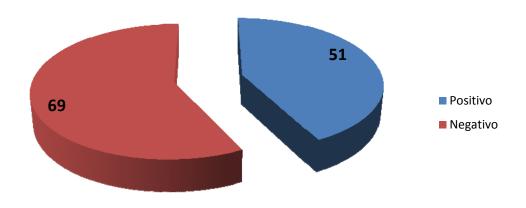
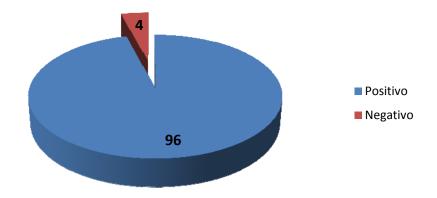




Figura 25 - Positividade do marcador CD20

Figura 26 - Positividade do marcador LMP-1

Figura 27 - Positividade do marcador p53

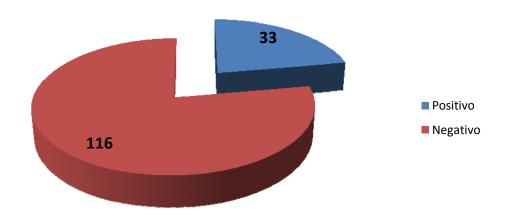


Figura 28 - Positividade do marcador Bcl-2

Dos 197 pacientes em que foi realizada sorologia para os vírus HTLV 1 e 2, para a hepatite B (Anti-HBV IgG e Anti HBsAg), para a hepatite C e para a sífilis (VDRL), a positividade foi de: um paciente para o vírus da hepatite C, 16 pacientes para o antígeno Anti-HVB IgG da hepatite B e 3 pacientes para o VDRL. HTLV 1 e 2 e HBsAg não foi reagente em nenhum paciente.

Setenta e oito pacientes (28,6%) foram refratários ao tratamento inicial com o esquema ABVD, necessitando de uma segunda abordagem terapêutica.

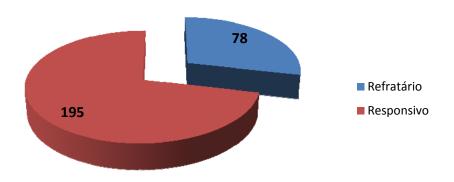


Figura 29 - Refratariedade ao tratamento com ABVD

Dos 195 pacientes que atingiram remissão completa após a primeira linha de tratamento, ocorreu recidiva do linfoma em 19 pacientes (9,7%) durante o período de acompanhamento.

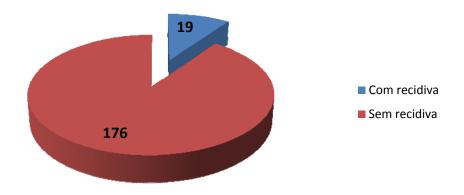


Figura 30 - Recidiva do linfoma

Trinta e oito pacientes (13,9%) foram a óbito durante o período de acompanhamento, sendo que, destes, 31 óbitos ocorreram sabidamente em decorrência da evolução da doença ou de complicações do tratamento e sete não tiveram relação direta com a doença ou com o tratamento. Destes últimos, um morreu por câncer de tireóide, um por câncer de pulmão, um por insuficiência cardíaca congestiva descompensada e quatro por causa indeterminada.

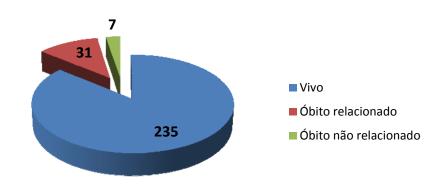


Figura 31 - Óbito dos pacientes

O tempo de acompanhamento dos pacientes variou de 1 a 141 meses, com tempo médio de acompanhamento de 65,4 meses.

A sobrevida livre de doença variou de zero a 131 meses, com média de 48,3 meses.

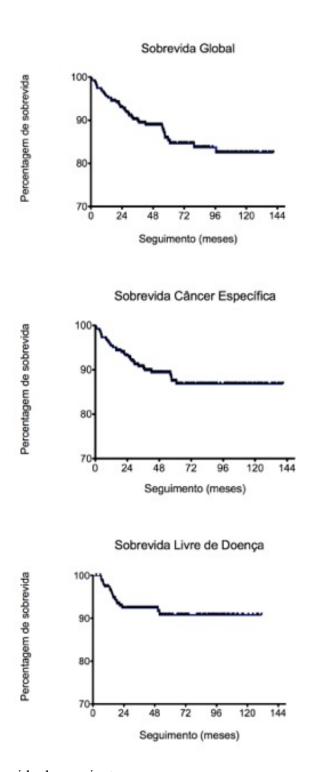


Figura 32 - Sobrevida dos pacientes

7.1 ANÁLISE DO VALOR PREDITIVO QUANTO À REFRATARIEDADE AO TRATAMENTO INICIAL COM ABVD

Ao analisarmos o valor preditivo quanto à refratariedade ao tratamento inicial com o esquema ABVD, encontramos que, dos imunomarcadores analisados, apenas o CD15 apresentou associação estatisticamente significante. O marcador CD15 apresentou-se como um fator protetor independente, com p=0.038, na análise multivariada.

Tabela 12 - Análise Univariada (Refratariedade)

Variável	Categoria	N (%)	Valor de p
T1 1	< 45 anos	63/233 (27,0%)	0.050
Idade	\geq 45 anos	15/40 (37,5%)	0,059
C	Masculino	48/149 (32,2%)	0.027
Sexo	Feminino	30/124 (24,2%)	0,037
G: 1 D	Sim	60/151 (39,7%)	- 0.001
Sintomas B	Não	18/122 (14,8%)	< 0,001
II 11:	< 10,5g/dL	34/80 (42,5%)	0.001
Hemoglobina	≥ 10,5g/dL	42/176 (23,9%)	0,001
T	< 15.000/mm ³	65/228 (28,5%)	0.072
Leucócitos	$\geq 15.000/\text{mm}^3$	11/27 (40,7%)	0,073
Time(faite = (Albandada)	< 600/mm ³	12/26 (46,2%)	0.020
Linfócitos (Absoluto)	$\geq 600/\text{mm}^3$	6/22 (27,9%)	0,030
I: 6' '. (D.1.)	< 8%	14/27 (51,9%)	0.006
Linfócitos (Relativo)	≥ 8%	59/218 (27,1%)	0,006
VIIIO	≤ 38	13/84 (15,5%)	- 0.001
VHS	> 38	39/93 (41,9%)	< 0,001
LDII	≤ 295	18/91 (19,8%)	0.002
LDH	> 295	46/122 (37,7%)	0,002
	Positivo	6/16 (37,5%)	0.150
HBV	Negativo	55/181 (30,4%)	0,179
	EN	62/195 (31,8%)	
***	CM	11/45 (24,4%)	0.010
Histopatológico	RL	3/23 (13,0%)	0,010
	DL	2/10 (20,0%)	
	I	0/12 (0,0%)	
	II	27/128 (21,1%)	
Estadio Clínico	III	27/76 (35,5%)	< 0,001
	IV	24/57 (42,1%)	1
	I + II	27/140 (19,3%)	
Estadio Clínico Agrupado	III + IV	51/133 (38,3%)	<0,001
	Sim	11/24 (45,8%)	
Infiltração da medula óssea	Não	67/249 (26,9%)	0,029
TDG	≤ 1 fator	24/126 (19,0%)	0.004
IPS	\geq 2 fatores	51/127 (40,2%)	< 0,001
	Positivo	52/208 (25,0%)	
CD15	Negativo	24/62 (38,7%)	0,035
	Positivo	15/50 (30,0%)	
CD20	Negativo	61/271 (22,5%)	0,789
LMP-1	Positivo	12/51 (23,5%)	0,315
	Negativo	22/69 (31,9%)	
	Positivo	24/96 (25,0%)	0,277
p53	Negativo	2/4 (50,0%)	
	Positivo	12/33 (36,4%)	
Bcl-2	Negativo	32/116 (27,6%)	0,329

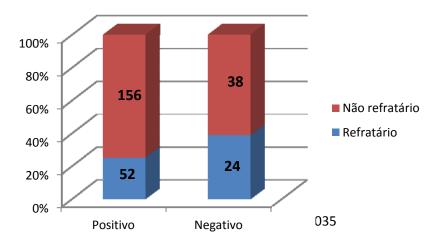


Figura 33 - CD15 & refratariedade

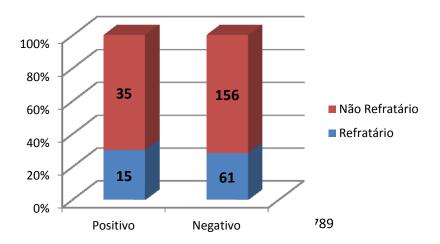


Figura 34 - CD20 & refratariedade

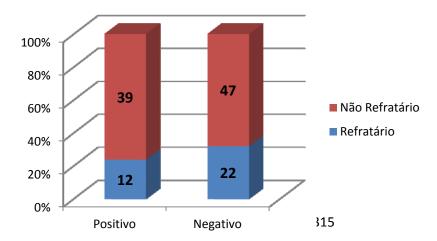


Figura 35 - LMP-1 & refratariedade

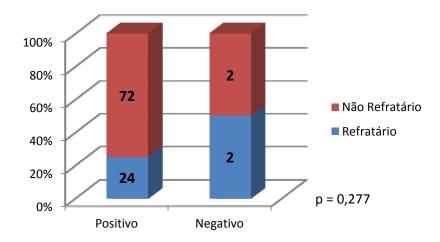


Figura 36 - p53 & refratariedade

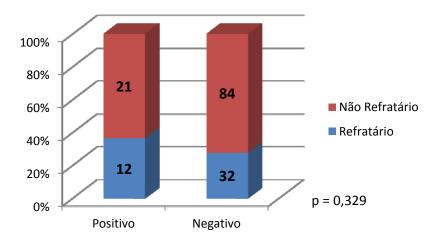


Figura 37 - Bcl-2 & refratariedade

Análise multivariada pela regressão logística para avaliar os fatores de risco independentes para refratariedade ao tratamento inicial dos pacientes com linfoma de Hodgkin clássico.

Tabela 13 - Análise Multivariada (Refratariedade)

Variável	Categoria	OR	IC95% OR	Valor de p
CD15	Positivo	1,0	1,1 – 6,1	0,038
	Negativo	2,5		
VHS	Até 38	1,0	1,9 – 10,0	< 0,001
VIIS	> 38	4,4	1,9 – 10,0	< 0,001
LDH	Até 295	1,0	1,1 – 5,5	0,023
	> 295	2,5	1,1 3,5	0,023

Legenda: OR: Odds ratio; IC95% OR: Intervalo de confiança de 95% para odds ratio; VHS: Velocidade de hemossedimentação; LDH: Desidrogenase láctica

7.2 ANÁLISE DO PROGNÓSTICO QUANTO À RECIDIVA DO LHC

Ao analisarmos os pacientes quanto à recidiva do LHc após remissão completa, nenhum dos marcadores imunohistoquímicos analisados apresentou relação de prognóstico de modo estatisticamente significante.

Tabela 14 - Análise Univariada (Recidiva)

Variável	Categoria	N (%)	Valor de p
Idade	< 45 anos	18/210 (8,6%)	0,386
Tuade	\geq 45 anos	1/28 (3,6%)	0,380
Sexo	Masculino	9/131 (6,9%)	0,435
Sexo	Feminino	10/107 (9,3%)	0,433
Sintomas B	Sim	12/123 (9,8%)	0,335
	Não	7/115 (6,1%)	0,333
Hamadahina	< 10.5 g/dL	4/60 (6,7%)	0.659
Hemoglobina	\geq 10,5g/dL	14/161 (8,7%)	0,658
Albumina	< 4,0 g/dL	5/57 (8,8%)	0,349
Albumma	\geq 4,0 g/dL	1/32 (3,1%)	0,349
Loughaitea	$< 15.000/\text{mm}^3$	17/197 (8,6%)	0.470
Leucócitos	$\geq 15.000/\text{mm}^3$	1/23 (4,3%)	0,470
I in 65 - it (A1 1t-)	< 600/mm ³	1/18 (5,6%)	0.621
Linfócitos (Absoluto)	\geq 600/mm ³	17/192 (8,9%)	0,631
I: (', ', (D.1.', ')	< 8%	2/19 (10,5%)	0.774
Linfócitos (Relativo)	≥ 8%	16/191 (8,4%)	0,774
VIIIO	≤38	5/79 (6,3%)	0.054
VHS	> 38	4/72 (5,6%)	0,854
1.011	≤ 295	5/81 (6,2%)	0.544
LDH	> 295	9/101 (8,9%)	0,544
	Positivo	2/13 (15,4%)	0.444
HBV	Negativo	12/157 (7,6%)	0,411
	EN	15/169 (8,9%)	
	CM	3/40 (7,5%)	
Histopatológico	RL	1/21 (4,8%)	0,746
	DL	0/8 (0,0%)	1
	I	0/12 (0,0%)	
	II	12/118 (10,2%)	1
Estadio Clínico	III	3/62 (4,8%)	0,449
	IV	4/46 (8,7%)	1
	I + II	12/130 (9,2%)	
Estadio Clínico Agrupado	III + IV	7/108 (6,5%)	0,438
	Sim	2/18 (11,1%)	
Infiltração da medula óssea	Não	17/220 (7,7%)	0,571
	Sim	15/168 (8,9%)	
Radioterapia	Não	4/70 (5,7%)	0,482
	Sim	3/44 (6,8%)	
Refratariedade	Não	16/194 (8,2%)	0,822
	≤ 1 fator	11/118 (9,3%)	
IPS	≥ 2 fatores	8/100 (8,0%)	0,697
	Positivo	16/208 (7,7%)	
CD15	Negativo	3/62 (4,8%)	0,441
	Positivo	3/50 (6,0%)	
CD20		· · · · · · · · · · · · · · · · · · ·	1
	Negativo Positivo	14/217 (6,5%) 2/51 (3,9%)	
LMP-1			1
	Negativo	4/69 (5,8%)	
p53	Positivo	5/96 (5,2%)	0,222
	Negativo	1/4 (25,0%)	
Bcl-2	Positivo	1/33 (3,0%)	0,685
_	Negativo	7/116 (6,0%)	

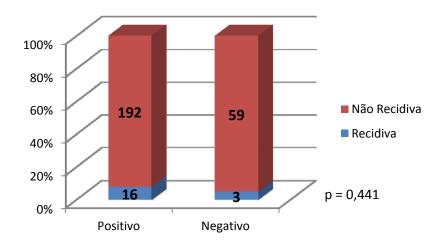


Figura 38 - CD15 & recidiva

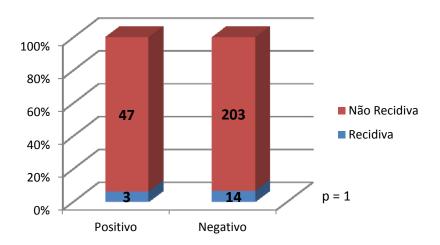


Figura 39 - CD20 & recidiva

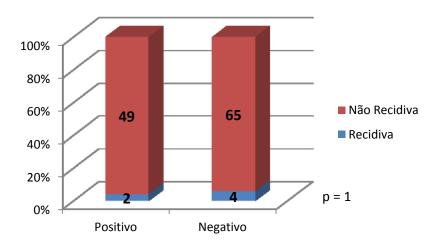


Figura 40 - LMP-1 & recidiva

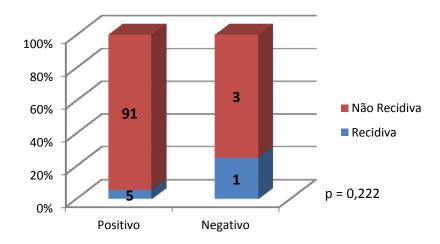


Figura 41 - p53 & recidiva

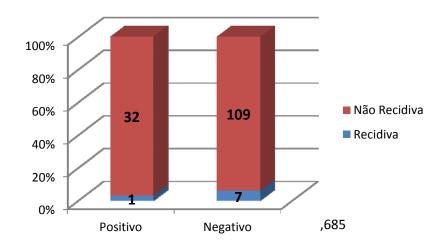


Figura 42 - Bcl-2 & recidiva

7.3 ANÁLISE DO PROGNÓSTICO QUANTO À SOBREVIDA CÂNCER ESPECIFICA

Ao analisarmos os pacientes quanto à sobrevida câncer específica, encontramos que, dos imunomarcadores analisados, apenas o p53 apresentou relação de prognóstico de modo estatisticamente significante (p = 0,041) na análise univariada, com um efeito protetor. Contudo, ele perdeu a significância estatística na análise multivariada.

Tabela 15 - Análise Univariada (Sobrevida Câncer Específica)

Variável	Categoria	N (%)	Valor de p
Idade	< 45 anos	18/233 (7,7%)	< 0,001
	≥ 45 anos	12/40 (30,0%)	
Sexo	Masculino	16/149 (10,7%)	0,858
SCAO	Feminino	14/124 (11,3%)	0,030
Sintomas B	Sim	23/151 (15,2%)	0,017
Sintomas B	Não	7/122 (5,7%)	0,017
Hemoglobina	< 10,5g/dL	17/80 (21,3%)	0,001
Hemoglooma	\geq 10,5g/dL	13/176 (7,4%)	- 0,001
Albumina	< 4,0 g/dL	20/79 (25,3%)	0,024
Albumma	≥ 4,0 g/dL	2/34 (5,9%)	0,024
Leucócitos	< 15.000/mm ³	28/228 (12,3)	0,460
Leucocitos	$\geq 15.000/\text{mm}^3$	2/27 (7,4%)	- 0,400
Linfócitos (Absoluto)	< 600/mm ³	8/26 (30,8%)	0,001
	\geq 600/mm ³	22/219 (10,0%)	
Linfócitos (Relativo)	< 8%	7/27 (25,9%)	0,031
	≥ 8%	23/218 (10,6%)	
VIIIC	≤ 38	3/84 (3,6%)	0,001
VHS	> 38	19/93 (20,4%)	

Cont/ Tabela 15

Variável	Categoria	N (%)	Valor de p
LDH	≤ 295	8/91 (8,8%)	0,119
	> 295	22/122 (18,0%)	0,119
IIDV	Positivo	3/16 (18,8%)	0,477
HBV	Negativo	20/181 (11,0%)	
	EN	20/195 (10,3%)	
II:-44-1/-:	CM	6/45 (13,3%)	0.765
Histopatológico	RL	2/23 (8,7%)	0,765
	DL	2/10 (20,0%)	-
	I	0/12 (0,0%)	
E (I' CIV '	II	8/128 (6,3%)	0.024
Estadio Clínico	III	12/76 (15,8%)	0,034
	IV	10/57 (17,5%)	-
E (I' Cl' ' A 1	I + II	8/140 (5,7%)	0.04
Estadio Clínico Agrupado	III + IV	22/133 (16,5%)	0,04
I C1. ~ 1 11 /	Sim	6/24 (25,0%)	0.017
Infiltração da medula óssea	Não	24/249 (9,6%)	0,017
D 1' / '	Sim	11/180 (6,1%)	c 0 001
Radioterapia	Não	19/93 (20,4%)	< 0,001
D - C4: - 1- 1-	Sim	28/78 (35,9%)	£ 0.001
Refratariedade	Não	2/195 (1,0%)	< 0,001
IDC	≤ 1 fator	5/126 (4,0%)	c 0 001
IPS	≥ 2 fatores	25/127 (19,7%)	< 0,001
CD15	Positivo	19/208 (9,1%)	0.200
CD15	Negativo	9/62 (14,5%)	0,289
CD20	Positivo	7/50 (14,0%)	0.744
CD20	Negativo	22/217 (10,1%)	0,544
LLAD 1	Positivo	8/51 (15,7%)	0,245
LMP-1	Negativo	6/69 (8,7%)	
52	Positivo	7/96 (7,3%)	0,041
p53	Negativo	2/4 (50,0%)	
- 1 A	Positivo	3/33 (9,1%)	0 = 11
Bcl-2	Negativo	14/116 (12,1%)	0,764

CD15 & Sobrevida Câncer Específica

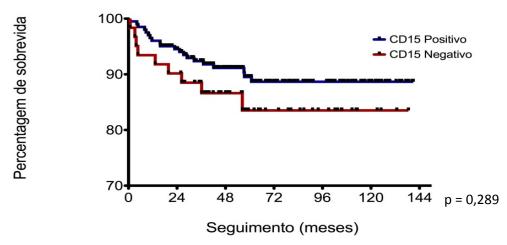


Figura 43 - CD15 & sobrevida câncer específica

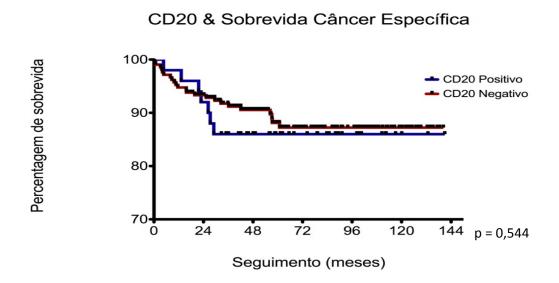
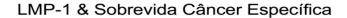



Figura 44 - CD20 & sobrevida câncer específica

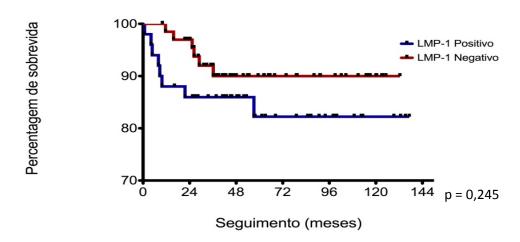


Figura 45 - LMP-1 & sobrevida câncer específica

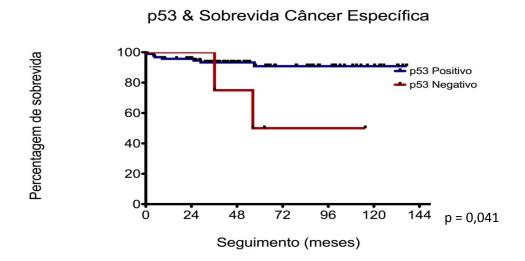


Figura 46 - p53 & sobrevida câncer específica

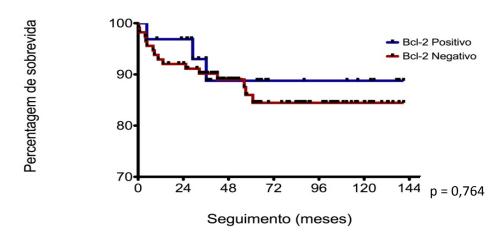


Figura 47 - Bcl-2 & sobrevida câncer específica

7.4 ANÁLISE DO PROGNÓSTICO QUANTO À SOBREVIDA LIVRE DE DOENÇA

Ao analisarmos os pacientes quanto à sobrevida livre de doença, encontramos que, dos marcadores imunohistoquímicos estudados, apenas o p53 apresentou relação de prognóstico de modo estatisticamente significante (p = 0,016) na análise univariada. Apresentando-se como um fator de melhor prognóstico. Contudo, ele perdeu a significância estatística na análise multivariada.

Tabela 16 - Análise Univariada (Sobrevida Livre de Doença)

Variável	Categoria	N (%)	Valor de p	
Idade	< 45 anos	18/210 (8,6%)	0,386	
Tuaue	≥ 45 anos	1/28 (3,6%)	0,360	
Sexo	Masculino	9/131 (6,7%)	0.425	
Sexu	Feminino	10/107 (9,3%)	0,435	
Sintomas B	Sim	12/123 (9,8%)	0,335	
Sintomas B	Não	7/115 (6,1%)	0,333	
Hemoglobina	< 10,5g/dL	4/60 (6,7%)	0,658	
nemoglooma	\geq 10,5g/dL	14/161 (8,7%)	0,038	
Albumina	< 4,0 g/dL	5/57 (8,8%)	0,349	
Albumma	≥ 4,0 g/dL	1/32 (3,1%)	0,349	
I anakaitaa	< 15.000/mm ³	17/197 (8,6%)	0.470	
Leucócitos	$\geq 15.000/\text{mm}^3$	1/23 (4,3%)	0,470	
I : (/ -: / (A l l / -)	< 600/mm ³	1/18 (5,6%)	0.621	
Linfócitos (Absoluto)	$\geq 600/\text{mm}^3$	17/192 (8,9%)	0,631	
Linfé aites (Dalatina)	< 8%	2/19 (10,5%)	0.774	
Linfócitos (Relativo)	≥ 8%	16/191 (8,4%)	0,774	
VHS	≤38	5/79 (6,3%)	0,854	
	> 38	4/72 (5,6%)		
I DII	≤ 295	5/81 (6,2%)	0.544	
LDH	> 295	9/101 (8,9%)	0,544	
IIDV	Positivo	2/13 (15,4%)	0.411	
HBV	Negativo	12/157 (7,6%)	0,411	
	EN	15/169 (8,9%)		
History to 16 gian	CM	3/40 (7,5%)	0.746	
Histopatológico	RL	1/21 (4,8%)	0,746	
	DL	0/8 (0,0%)	_	
	I	0/12 (0,0%)		
Estadia Olivia	II	12/118 (10,2%)	0.440	
Estadio Clínico	III	3/62 (4,8%)	0,449	
	IV	4/46 (8,7%)		
Estadio Clímica A amorto 1-	I + II	12/130 (9,2%)	0.420	
Estadio Clínico Agrupado	III + IV	7/108 (6,5%)	0,438	
In Citano and James 1-1-1	Sim	2/18 (11,1%)	0.571	
Infiltração da medula óssea	Não	17/220 (7,7%)	0,571	

Cont/ Tabela 16

Variável	Categoria	N (%)	Valor de p
Radioterapia	Sim	15/168 (8,9%)	0,482
Kadioterapia	Não	4/70 (5,7%)	0,482
Refratariedade	Sim	3/44 (6,8%)	0,822
	Não	16/194 (8,2%)	0,822
IPS	≤ 1 fator	11/118 (9,3%)	0,697
	≥ 2 fatores	8/100 (8,0%)	0,097
CD15	Positivo	16/183 (8,7%)	0.257
	Negativo	3/54 (5,6%)	0,257
CD20	Positivo	3/43 (7,0%)	0,614
CD20	Negativo	14/190 (7,4%)	0,614
LMP-1	Positivo	2/42 (4,8%)	0,235
LIVIP-1	Negativo	4/60 (6,7%)	0,233
p53	Positivo	5/85 (5,9%)	0.016
	Negativo	1/3 (33,3%)	0,016
Bcl-2	Positivo	1/28 (3,6%)	0,634
	Negativo	7/100 (7,0%)	0,034

CD15 & Sobrevida Livre de Doença

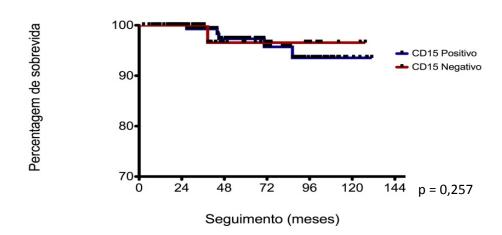


Figura 48 - CD15 & Sobrevida Livre de Doença

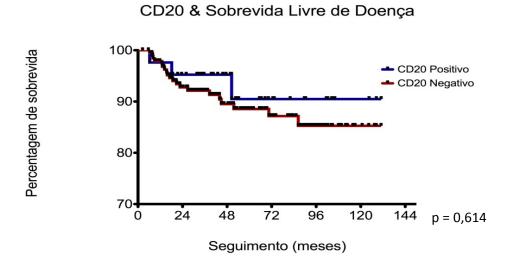


Figura 49 - CD20 & Sobrevida Livre de Doença

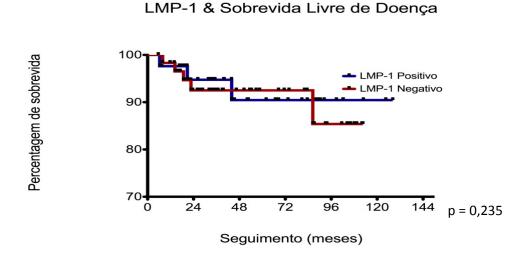


Figura 50 - LMP-1 & Sobrevida Livre de Doença

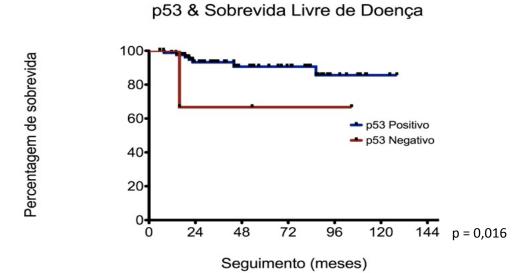


Figura 51 - p53 & Sobrevida Livre de Doença

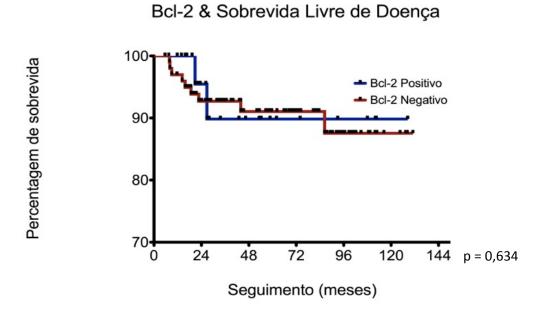


Figura 52 - Bcl-2 & Sobrevida Livre de Doença

8 DISCUSSÃO

Os fatores de prognóstico no linfoma de Hodgkin estão desaparecendo devido à bem sucedida adaptação da intensidade do tratamento para a doença individual do paciente. É tempo de refocar as pesquisas para olhar por fatores prognósticos em direção a uma relação entre a doença individual e a força do tratamento necessária para obter uma alta chance de cura (HASENCLEVER 2002).

8.1 MARCADORES IMUNOHISTOQUÍMICOS

A frequência dos marcadores imunohistoquímicos, CD15, CD20 e LMP-1 ficaram dentro da média encontrada na literatura. O marcador p53 ficou acima da média, provavelmente devido a detalhes técnicos diferentes e, principalmente, devido ao critério de positividade utilizado pelos pesquisadores. Nós utilizamos como critério de positividade a presença de pelo menos uma célula H-RS, ou suas variantes neoplásicas, corada pelo marcador em estudo, o que, atualmente, é considerado o melhor ponto de corte. Contrariamente, o marcador Bcl-2 ficou abaixo da média encontrada na literatura, provavelmente devido a detalhes técnicos, como procedimentos de fixação diferentes, anticorpos ou métodos de recuperação antigênica usada.

Tabela 17 – Marcadores Imunohistoquímicos.

Marcador	Mínimo	Máximo	Média	Este
				trabalho
CD15	27,3%	100,0%	73,9%	77,0%
	Forni et al. 1985	Hyder e Schnitzer 1986		
CD20	4,5%	58,2%	21,8%	18,7%
	Pinto 2003	Schmid et al. 1991		
LMP-1/EBER	17,0%	100,0%	44,0%	42,5%
	Clarke et al. 2001	Weinreb et al. 1996		
p53	10,3%	100,0%	59,2%	96,0%
	Sup et al. 2005	Maggio et al. 2001		
Bcl-2	20,5%	61,4%	41,5%	22,1%
	Montalbán et al. 2004	Morente et al. 1997		

8.2 **REFRATARIEDADE**

Em nosso trabalho, encontramos uma taxa de refratariedade ao tratamento inicial de 28,6% (78/273), o que está um pouco elevado em comparação à literatura, a qual variou de 3,3% GAUSE et al. (1991) a 42,5% GOBBI et al. (1981), com uma média de 22,9%.

Nossos dados apontam para o imunomarcador CD15 funcionando como um fator preditivo independente no que se refere à refratariedade do LHc ao tratamento poliquimioterápico padronizado com o esquema ABVD. Em nosso estudo, o CD15 apresentou-se como um fator protetor estatisticamente significante na análise multivariada, (p = 0,038). Não encontramos nenhum artigo nacional que tentasse relacionar o valor preditivo do CD15. Em uma revisão internacional, encontramos apenas dois artigos (MORENTE et al. 1997 e MONTALBÁN et al. 2000) que avaliaram o valor preditivo do CD15, e nenhum deles encontrou esta relação.

Contudo, nenhum destes trabalhos padronizou o tratamento inicial; utilizando vários esquemas diferentes de tratamento inicial, o que dificulta muito uma avaliação sobre o valor preditivo em relação à refratariedade ao tratamento inicial. Como a função do CD15 ainda é desconhecida, alguns autores (VASSALO et al. 2003; DINAND et al. 2008) hipotetizaram que ele possa estar relacionado a mecanismos de sobrevivência celular. Nós podemos acrescentar a hipótese de que ele possa influenciar as células H-RS, tornando-as mais suscetíveis a apoptose induzida pela quimioterapia e pela radioterapia.

Uma grande parte dos trabalhos pesquisados utilizou, em seus resultados, o conceito de remissão completa como o oposto de refratariedade. Portanto, ao compararmos nossos dados relativos à refratariedade com a bibliografía pesquisada utilizaremos, também, o conceito de remissão completa.

Tabela 18 - CD15 & Remissão Completa.

Estudo	Pacientes	Critério de positividade	Percentagem	Remissão
_		células H-RS	CD15+	Completa
Montalbán et al. 2000	LH	NI	74,4%	ØRC
Morente et al. 1997	LH	Qualquer	74,3%	ØRC
Este Trabalho	LHc	Qualquer	77,0%	↑RC

Legenda: RC: Remissão completa

Em nosso trabalho, não encontramos uma valor preditivo para o marcador CD20, diferentemente do que havíamos encontrado (GIESTA et al. 2009) anteriormente, quando encontramos o CD20 como um fator de pior resposta ao tratamento. Contrariamente, DONNELLY et al. (1999) encontrou o CD20 como um fator de melhor resposta. Contudo, ele além de não padronizar o tratamento inicial,

ainda selecionou os pacientes, incluindo na pesquisa apenas os subtipos histológicos esclerose nodular e celularidade mista.

Tabela 19 - CD20 & Remissão Completa.

Estudo	Pacientes	Critério de positividade	Percentagem	Remissão
		células H-RS	CD20+	Completa
Giesta et al. 2009	LHc	Qualquer	38,1%	↓RC
Donnelly et al. 1999	LHc (EN/CM)	NI	8,8%	↑RC
Este Trabalho	LHc	Qualquer	18,7%	ØRC

Legenda: RC: Remissão completa

Nossa pesquisa não demonstrou relação entre a positividade do marcador LMP-1 nas células H-RS e a refratariedade, semelhante ao encontrado por MORENTE et al. (1997) e AXDORPH et al. (1999). MONTALBÁN et al. (2000) e GLAVINA-DURDOV et al. (2001) encontraram que o LMP-1 estaria relacionado com uma menor refratariedade. GLAVINA-DURDOV et al. (2001) padronizou o tratamento inicial com a poliquimioterapia MOPP/ABVD, contudo, ele englobou no seu estudo os pacientes que atualmente são classificados como LH predominância linfocítica nodular, que agora considera-se ser uma neoplasia de células B de baixo grau, (STARK et al. 2002) o que pode ser considerado um viés de seleção e pode ter produzido alterações nos resultados da análise estatística. Ele também analisou apenas 100 pacientes. MONTALBÁN et al. (2000) utilizou vários tipos de tratamento inicial, o que acaba por afetar os resultados da análise.

Tabela 20 - LMP-1/EBER & Remissão Completa.

Estudo	Paciente	Critério de	Percentagem	Remissão
		positividade células	LMP-1+/EBER+	Completa
		H-RS		
Glavina-Durdov et al. 2001	LH	NI	26,0%	↑RC
Montalbán et al. 2000	LH	NI	53,6%	↑RC
Morente et al. 1997	LH	Qualquer	51,4%	ØRC
Axdorph et al. 1999	LHc (EN/CM)	Qualquer	32,6%	ØRC
Este Trabalho	LHc	Qualquer	42,5%	ØRC

Legenda: RC: Remissão completa; NI: Não Informado

O marcador p53 não apresentou valor preditivo em relação à refratariedade, coincidentemente ao encontrado pela maioria dos autores (MORENTE et al. 1997; MONTALBÁN et al. 2000; PINHEIRO et al. 2007). Apenas SMOLEWSKI et al. (2000) encontrou que o p53 estaria relacionado com uma maior refratariedade ao tratamento inicial. Contudo, ele usou como ponto de corte uma positividade de mais de 20% das células H-RS e, também não padronizou o tratamento inicial.

Tabela 21 - p53 & Remissão Completa.

Estudo	Pacientes	Critério de positividade	Percentagem	Remissão
		células H-RS	p53+	Completa
Smolewski et al. 2000	LH	>20%	57,7%	↓RC*
Pinheiro et al. 2007	LHc	Qualquer	52,9%	ØRC
Montalbán et al. 2000	LH	NI	NI	ØRC
Morente et al. 1997	LH	Qualquer	92,9%	ØRC
Este Trabalho	LHc	Qualquer	96,0%	ØRC

^{*} Se >20% das células forem p53+

Legenda: RC: Remissão completa; NI: Não Informado

O marcador Bcl-2 também não apresentou valor preditivo no que se refere à refratariedade, em consonância ao encontrado na literatura internacional (MORENTE et al. 1997; MONTALBÁN et al. 2000).

Tabela 22 - Bcl-2 & Remissão Completa.

Estudo	Pacientes	Critério de	Percentagem Bcl-2+	Remissão
		positividade		Completa
		células H-RS		
Morente et al. 1997	LH	>20%	61,4%	ØRC
Montalbán et al. 2000	LH	NI	59,1%	ØRC
Este Trabalho	LHc	Qualquer	22,1%	ØRC

Legenda: RC: Remissão completa; NI: Não Informado

8.3 RECIDIVA

A taxa de recidiva encontrada em nosso estudo (9,7%) está abaixo do descrito na literatura. A literatura mostra uma taxa de recidiva variando de 13,0% (NADALI et al. 1994 e MOLOT et al. 1994) à 70,0% (SPECHT e NISSEN 1988), com uma média de 28,4%. Acreditamos que este valor esteja relacionado com uma maior efetividade do tratamento inicial com o esquema ABVD. Este tratamento, em nossa análise, apresentou uma relativamente alta taxa de refratariedade com uma baixa taxa de recidiva, mostrando que apesar de ser um tratamento extremamente eficaz para a grande maioria dos pacientes com LHc, ainda há um subgrupo de pacientes em que ele não é totalmente adequado.

Em nossa análise sobre a recidiva do LHc, o marcador CD15 não apresentou valor prognóstico. DE MASCAREL et al. (1990) também não encontrou relação de prognóstico entre o CD15 e a recidiva. MONTALBÁN et al. (2004) não encontrou

relação de prognóstico entre o marcador em estudo e o desfecho, que foi definido, por ele, como ausência de refratariedade e de recidiva precoce com menos de 1 ano. VON WASIELEWSKI et al. (1997a) encontrou que os pacientes que apresentavam positividade para o CD15 apresentaram menos recidivas, contudo ele selecionou os pacientes, incluindo apenas aqueles dos subtipos esclerose nodular e celularidade mista e ele também padronizou como ponto de corte ≥20% das células H-RS positivas para considerar o caso como positivo. Atualmente, se aceita como melhor ponto de corte qualquer célula positiva. Mesmo algumas células positivas para o marcador podem sobreviver à apoptose induzida pela quimioterapia e causar recidiva (RASSIDAKIS et al. 2002a).

Tabela 23 - CD15 & Recidiva.

Estudo	Pacientes	Critério de positividade	Percentagem	Recidiva
		células H-RS	CD15+	
Von Wasielewski et al. 1997b	LHc	≥20%	84,4%	↓Recidiva
	(EN/CM)			
De Mascarel et al. 1990	LH	≥10%	72,5%	Ø Recidiva
Montalbán et al. 2004	LHc	NI	76,4%	Ø Desfecho*
Este Trabalho	LHc	Qualquer	77,0%	Ø Recidiva

^{*} Desfecho = Refratariedade ou Recidiva precoce <1 ano

Legenda: NI: Não Informado

Não observamos uma associação entre o CD20 e a recidiva do LHc. Apenas TZANKOV et al. (2003b) estudou esta relação e encontrou que o CD20 estaria relacionado com uma menor taxa de recidiva. Contudo, ele usou como ponto de corte uma positividade de células H-RS ≥10% e estudou apenas 119 pacientes, dos quais apenas 24 apresentavam células H-RS positivas para o marcador CD20. CANIONI et al. (2009) e MONTALBÁN et al. (2004) estudaram a recidiva juntamente com a

refratariedade, chamando de desfecho. CANIONI et al. (2009) encontrou um melhor desfecho e MONTALBÁN et al. (2004) não encontrou relação entre o CD20 e o desfecho.

Tabela 24 - CD20 & Recidiva.

Estudo	Pacientes	Critério de	Percentagem CD20+	Recidiva
		positividade células		
		H-RS		
Tzankov et al. 2003b	LHc	≥10%	20,2%	↓Recidiva
Canioni et al. 2009	LHc	>30%	32,2%	Melhor Desfecho*
Montalbán et al. 2004	LHc	NI	18,4%	Ø Desfecho*
Este Trabalho	LHc	Qualquer	18,7%	Ø Recidiva

^{*} Desfecho = Refratariedade ou Recidiva precoce <1 ano

Legenda: NI: Não Informado

Em nossa pesquisa, não encontramos relação entre a presença do marcador LMP-1 e a recidiva, igualmente ao que foi encontrado no único artigo (KRUGMANN et al. 2003) que estudou esta relação. MONTALBÁN et al. (2004) não encontrou relação entre o LMP-1 e o desfecho (refratariedade ou recidiva precoce em menos de 1 ano) e LEVY et al. (2000) encontrou que a positividade do marcador em estudo estava relacionada com um pior desfecho ("paciente vivo sem doença" x "paciente vivo com doença/paciente morto pelo LH").

Tabela 25 - LMP-1/EBER & Recidiva.

Estudo	Paciente	Critério de positividade	Percentagem LMP-	Recidiva
		células H-RS	1+/EBER+	
Krugmann et al. 2003	LHc	NI	26,1%	Ø Recidiva
Montalbán et al. 2004	LHc	NI	35,1%	ØDesfecho*
Levy et al. 2000	LH	NI	47,8%	↓Desfecho**
Este Trabalho	LHc	Qualquer	42,5%	Ø Recidiva

^{*} Desfecho = Refratariedade ou Recidiva precoce <1 ano.

Legenda: NI: Não Informado

Pacientes com tumorespositivos para o p53 apresentaram uma tendência a um melhor prognóstico no tocante a recidiva, contudo sem significância estatística (p = 0,222). Entretanto, há limitações nesta análise, pois, em apenas quatro pacientes o p53 foi negativo. Após uma vasta pesquisa bibliográfica, não encontramos nenhum trabalho avaliando a recidiva do LH com o marcador p53. MONTALBÁN et al. (2004) avaliou o p53 quanto ao desfecho e encontrou um pior desfecho nos pacientes que apresentavam o p53.

Tabela 26 - p53 & Recidiva.

Estudo	Pacientes	Critério de positividade	Percentagem p53+	Recidiva
		células H-RS		
Montalbán et al. 2004	LHc	NI	20,5%	Pior desfecho*
Este Trabalho	LHc	Qualquer	96,0%	Ø Recidiva

^{*} Desfecho = Refratariedade ou Recidiva precoce <1 ano

Legenda: NI: Não Informado

^{**} Desfecho = Sem doença x vivo com doença ou morto pelo LH

Não encontramos relação de prognóstico entre a positividade do Bcl-2 e a recidiva. Após uma vasta revisão bibliográfica não encontramos nenhum estudo comparando a recidiva com o Bcl-2. Apenas MONTALBÁN et al. (2004) e CANIONI et al. (2009); compararam-no com o desfecho (refratariedade ou recidiva precoce <1 ano). CANIONI et al. (2009) encontrou que o Bcl-2 estaria relacionado com um pior desfecho e MONTALBÁN et al. (2004) não encontrou relação entre eles.

Tabela 27 - Bcl-2 & Recidiva.

Estudo	Pacientes	Critério de positividade células H-RS	Percentagem Bcl-2+	Recidiva
Canioni et al. 2009	LHc	>40%	33,9%	Pior Desfecho*
Montalbán et al. 2004	LHc	NI	20,5%	Ø Desfecho*
Este Trabalho	LHc	Qualquer	22,1%	Ø Recidiva

^{*} Desfecho = Refratariedade ou Recidiva precoce <1 ano

Legenda: NI: Não Informado

8.4 SOBREVIDA CÂNCER ESPECÍFICA

Ao estudarmos a relação entre a presença do CD15 e a sobrevida câncer específica, encontramos que a presença do CD15 não apresenta relação significativamente estatística com a sobrevida. Nossos dados são semelhantes aos encontrados por outros autores (MORENTE et al. 1997; MONTALBÁN et al. 2000; BARROS et al. 2008; FU et al. 2008). Alguns pesquisadores (PETRELLA et al. 1989; VASSALO et al. 2003; DINAND et al. 2008) encontraram que o CD15 estaria relacionado com uma maior sobrevida global, mas não avaliaram a sobrevida câncer

específica. Apenas um pesquisador, VON WASIELEWSKI et al. em (1997a), encontrou que o CD15 estaria relacionado com uma menor sobrevida global, contudo ele também não avaliou a sobrevida câncer específica. Sabe-se que a avaliação câncer específica é muito mais importante para uma avaliação prognóstica do que a sobrevida global, pois não inclui os casos de óbito não relacionados à doença em estudo.

Tabela 28 - CD15 & Sobrevida.

Estudo	Pacientes	Critério de	Percentagem	Sobrevida
		positividade células	CD15+	
		H-RS		
Vassalo et al. 2003	LHc	Qualquer	57,7%	↑SG
Petrella et al. 1989	LH	NI	59,3%	↑SG
Dinand et al. 2008	LHc pediátrico	Qualquer	90,1%	↑SG
Von Wasielewski et al. 1997a	LHc (EN/CM)	≥20%	84,4%	↓SG
Barros et al. 2008	LHc pediátrico	NI	66,2%	ØSG
Fu et al. 2008	LHc	>10%	37,1%	ØSG
Montalbán et al. 2000	LH	NI	74,4%	ØSG
Morente et al. 1997	LH	Qualquer	74,3%	ØSG
Este Trabalho	LHc	Qualquer	77,0%	ØSCE

Legenda: SG: Sobrevida Global; SCE: Sobrevida Câncer Específica; NI: Não Informado

Em nosso estudo, a presença do marcador CD20 também não se correlacionou com a sobrevida câncer específica, igualmente ao que foi encontrado por MOLOT et al. (1994). Vários pesquisadores estudaram a relação entre o CD20 e a sobrevida global, sendo que alguns (MOLOT et al. 1994; DONNELLY et al. 1999; VASSALO et al. 2002; TZANKOV et al. 2003b; FU et al. 2008; ALDRED et al. 2008) não encontraram relação entre eles. TZANKOV et al. (2003b) encontrou uma maior sobrevida global, apenas para aqueles pacientes com diagnóstico e tratamento

mais antigos (1974 a 1980) não encontrando para os pacientes com diagnóstico e tratamento mais recentes (1981 a 1999). ALDRED et al. (2008) encontrou uma menor sobrevida global apenas para o subgrupo de 21 a 40 anos de idade. PORTLOCK et al. (2004) encontrou uma menor sobrevida global. Entretanto ele utilizou um ponto de corte de mais de 50% das células H-RS positivas para o CD20 para considerar o caso positivo.

Tabela 29 - CD20 & Sobrevida.

Estudo	Pacientes	Critério de	Percentagem	Sobrevida
		positividade células	CD20+	
		H-RS		
Tzankov et al. 2003b	LHc	≥10%	20,2%	ØSG / ↑SG*
Portlock et al. 2004	LHc	>50%	11,3%	↓SG
Aldred et al. 2008	LHc	Qualquer	13,8%	ØSG / ↓SG**
Fu et al. 2008	LHc	>10%	30,0%	ØSG
Vassalo et al. 2002	LHc	Qualquer	9,0%	ØSG
Molot et al. 1994	LH	≥25%	19,6%	ØSG / ØSCE
Donnelly et al. 1999	LHc (EN/CM)	NI	8,8%	ØSG
Este Trabalho	LHc	Qualquer	18,7%	ØSCE

^{*} Pacientes tratados entre 1974 a 1980 (antigos)

Legenda: NI: Não Informado; SG: Sobrevida Global; SCE: Sobrevida Câncer Específica

Não encontramos uma relação de prognóstico entre o LMP-1 e a sobrevida câncer específica. Nossos dados coincidem com a grande maioria dos trabalhos publicados (ENBLAD et al. 1997 e 1999; AXDORPH et al. 1999; KEEGAN et al. 2005; ASANO et al. 2006). Apenas STARK et al. (2002) e JARRETT et al. (2005) encontraram que o LMP-1 se relaciona com uma diminuição na sobrevida câncer específica. STARK et al. (2002) avaliou apenas uma subpopulação idosa (≥60 anos), que recebeu vários tipos de tratamentos iniciais, incluiu os pacientes com LH

^{**} Idade entre 21 – 40 anos

predominância linfocítica nodular e não informou qual foi seu ponto de corte para considerar o caso positivo para o marcador LMP-1. JARRETT et al. (2005) avaliou a presença do EBV a partir da positividade do RNA EBV-codificado (EBER) por hibridização *in situ*, diferentemente de nossa metodologia e não informou qual o(s) tratamento(s) inicial(is) utilizado(s) e nem qual foi o ponto de corte utilizado para considerar o caso positivo. Outros pesquisadores avaliaram a sobrevida global ao LH em relação à presença do LMP-1/EBER, com resultados contraditórios.

Tabela 30 - LMP-1 e/ou EBER & Sobrevida.

Estudo	Paciente	Critério de positividade células H-RS	Percentagem LMP-1+ e/ou EBER+	Sobrevida
Engel et al. 2000	LHc Pediátrico (EN/CM)	NI	68,1%	↑SG
Montalbán et al. 2000	LH	NI	53,6%	↑SG
Morente et al. 1997	LH	Qualquer	51,4%	↑SG
Naresh et al. 2000	LHc	>10%	78,2%	↑SG
Vassalo et al. 2001	LHc	>10%	64,1%	↑SG
Vassalo et al. 2003	LHc	Qualquer	46,2%	↑SG
Claviez et al. 2005	LH Pediátrico	NI	31,2%	↓SG
Jarrett et al. 2005	LHc	NI	33,2%	↓SG / ↓SDE
Stark et al. 2002	LH	NI	34,3%	↓SG / ↓SDE
Clarke et al. 2001	LH	NI	17,0%	ØSG / ↓SG*
Asano et al. 2006	LHc (EN/CM)	>10%	47,5%	ØSDE
Axdorph et al. 1999	LHc (EN/CM)	Qualquer	32,6%	ØSG / ØSCE
Chabay et al. 2008	LH Pediátrico	NI	51,7%	ØSG
Enblad et al. 1997	LH	Qualquer	25,2%	ØSDHE
Flavell et al. 2003	LH Avançado	Qualquer	28,6%	ØSG
Glavina-Durdov et al. 2001	LH	NI	26,0%	ØSG
Herling et al. 2003	LHc	Qualquer	21,5%	ØSG
Keegan et al. 2005	LHc	Qualquer	26,7%	ØSG / ØSDE
Krugmann et al. 2003	LHc	NI	26,1%	ØSG
Murray et al. 1999	LH Avançado	NI	26,8%	ØSG
Garcia et al. 2003	LHc	Qualquer	38,1%	ØSG
Fellbaum et al. 1992	LH	NI****	35,3%	ØSG
Armstrong et al. 1994	LH	Qualquer	35,6%	ØSG
Enblad et al. 1999	LH	NI	27,4%	ØSG / ØSDHE
Aldred et al. 2008	LHc	Qualquer	40,7%	ØSG
Este Trabalho	LHc	Qualquer	42,5%	ØSCE

* Se pacientes ≥45 anos **Legenda:** SG: Sobrevida Global; SCE: Sobrevida Câncer Específica; SDE: Sobrevida Doença Específica; SDHE: Sobrevida Doença de Hodgkin Específica; NI: Não Informado

Apesar de nossos dados terem apontado o p53 como um fator protetor em relação à sobrevida câncer específica, de modo estatisticamente significante (p = 0,041) na análise univariada, ele perdeu a significância estatística na análise multivariada. Provavelmente porque tivemos um número muito pequeno de pacientes com p53 negativo (quatro pacientes). Não foi encontrado nenhum trabalho avaliando estas variáveis. DINAND et al. (2008) encontrou uma maior sobrevida global para os pacientes com p53 positivo. Alguns pesquisadores (SMOLEWSKI et al. 2000; GARCIA et al. 2003) encontraram uma menor sobrevida global e outros como XERRI et al. (1994), MORENTE et al. (1997), MONTALBÁN et al. (2000), GARCIA et al. (2003), SUP et al. (2005), PINHEIRO et al. (2007) e BARISIK et al. (2010) não encontraram relação entre o p53 e a sobrevida global.

Tabela 31 - p53 & Sobrevida.

Estudo	Pacientes	Critério de positividade células H-RS	Percentagem p53+	Sobrevida
Dinand et al. 2008	LHc pediátrico	Qualquer	90,1%	↑SG
Smolewski et al. 2000	LH	>20%	57,7%	↓SG
Garcia et al. 2003	LHc	>80%	15,5%	↓SG
Barisik et al. 2010	LH	≥10%	48,1%	ØSG
Morente et al. 1997	LH	Qualquer	92,9%	ØSG
Xerri et al.1994	LH	Qualquer	75,5%	ØSG
Pinheiro et al. 2007	LHc	Qualquer	52,9%	ØSG
Sup et al. 2005	LHc	≥10%	10,3%	ØSG
Montalbán et al. 2000	LH	NI	NI	ØSG
Este Trabalho	LHc	Qualquer	96,0%	ØSCE

Legenda: SG: Sobrevida Global; SCE: Sobrevida Câncer Específica; NI: Não Informado

Não encontramos relação entre o Bcl-2 e a sobrevida câncer específica. Após revisão bibliográfica não foi encontrada nenhuma pesquisa avaliando a sobrevida câncer específica à presença do Bcl-2. Alguns pesquisadores como MORENTE et al.

(1997) e MONTALBÁN et al. (2000) estudaram a sobrevida global e não encontraram relação com o marcador, outros (SMOLEWSKI et al. 2000; RASSIDAKIS et al. 2002a; GARCIA et al. 2003; SUP et al. 2005) encontraram uma menor sobrevida global e apenas VASSALO et al. (2003) encontrou uma maior sobrevida global, mas apenas após estratificação por histologia.

Tabela 32 - Bcl-2 & Sobrevida.

Estudo	Pacientes	Critério de positividade células H-RS	Percentagem Bcl-2+	Sobrevida
Vassalo et al. 2003	LHc	Qualquer	64,1%	↑SG*
Rassidakis et al. 2002a	LHc	Qualquer	61,2%	↓SG
Smolewski et al. 2000	LH	≥10%	46,9%	↓SG
Sup et al. 2005	LHc	≥10%	26,2%	↓SG
Garcia et al. 2003	LHc	>50%	23,1%	↓SG
Morente et al. 1997	LH	>20%	61,4%	ØSG
Montalbán et al. 2000	LH	NI	59,1%	ØSG
Este Trabalho	LHc	Qualquer	22,1%	ØSCE

^{*} Somente após estratificação por histologia.

Legenda: SG: Sobrevida Global; SCE: Sobrevida Câncer Específica; NI: Não Informado

8.5 SOBREVIDA LIVRE DE DOENÇA

No estudo do marcador CD15 em relação à sobrevida livre de doença não encontramos relação de prognóstico entre eles, igualmente ao que foi encontrado por vários pesquisadores (ENBLAD et al. 1993; MONTALBÁN et al. 2000; BARROS et al. 2008; FU et al. 2008). Somente DINAND et al. (2008) e PETRELLA et al. (1989) encontraram uma relação de prognóstico entre o CD15 e à sobrevida livre de doença, sendo o CD15 relacionado com um melhor prognóstico. DINAND et al. (2008)

analisou o subgrupo de pacientes pediátricos (<15 anos) e utilizou vários tipos de tratamento inicial e PETRELLA et al. (1989) incluiu em sua pesquisa os pacientes com LH predominância linfocítica nodular e não informou qual foi seu ponto de corte para considerar o caso positivo. Isto pode ter influenciado o resultado encontrado por estes pesquisadores.

Tabela 33 - CD15 & Sobrevida Livre de Doença.

Estudo	Pacientes	Critério de positividade	Percentagem	Sobrevida Livre
Estudo	Pacientes	células H-RS	CD15+	de Doença
Dinand et al. 2008	LHc pediátrico	Qualquer	90,1%	↑SLF
Petrella et al. 1989	LH	NI	59,3%	↑SLD
Barros et al. 2008	LHc pediátrico	NI	66,2%	ØSLF
Fu et al. 2008	LHc	>10%	37,1%	ØSLF
Montalbán et al. 2000	LH	NI	74,4%	ØSLF
Enblad et al. 1993	LH	≥20%	56,5%	ØSLF
Este Trabalho	LHc	Qualquer	77,0%	ØSLD

Legenda: SLF: Sobrevida Livre de Falhas; SLD: Sobrevida Livre de Doença; NI: Não Informado

Ao analisarmos a relação entre a presença do marcador CD20 e a sobrevida livre de doença, também não encontramos uma relação com significância estatística. O mesmo foi encontrado na maioria das pesquisas já realizadas (ENBLAD et al. 1993; MOLOT et al. 1994; RASSIDAKIS et al. 2002b; TZANKOV et al. 2003b; ALDRED et al. 2008; FU et al. 2008). Apenas três pesquisadores, DONNELLY et al. (1999), PORTLOCK et al. (2004) e TZANKOV et al. (2003b), encontraram resultados diferentes. TZANKOV et al. (2003b) encontrou que, nos pacientes com diagnóstico e tratamento mais antigos (1974-1980), o CD20 relacionou-se com um aumento na sobrevida livre de doença e nos pacientes com diagnóstico e tratamento mais recentes (1981 a 1999) esta relação desapareceu. PORTLOCK et al. (2004)

encontrou uma diminuição da sobrevida livre de doença. Entretanto, ele usou um ponto de corte extremamente alto, de mais de 50% das células H-RS positivas para considerar o caso como positivo. DONNELLY et al. (1999) também encontrou uma diminuição da sobrevida livre de doença. Contudo, ele estudou apenas o subgrupo de pacientes com LH que apresentava histopatologia tipo celularidade mista ou esclerose nodular, tendo excluído os outros subtipos histológicos. Estas seleções podem ter causado um importante viés na análise estatística.

Tabela 34 - CD20 & Sobrevida Livre de Doença.

Estudo	Pacientes	Critério de	Percentagem	Tempo Livre
		positividade	CD20+	de Doença
		células H-RS		
Donnelly et al. 1999	LHc (EN/CM)	NI	8,8%	↓SLF
Portlock et al. 2004	LHc	>50%	11,3%	↓TFT
Tzankov et al. 2003b	LHc	≥10%	20,2%	ØSLF / ↑SLF*
Fu et al. 2008	LHc	>10%	30,0%	ØSLF
Enblad et al. 1993	LH	≥20%	26,0%	ØSLF
Rassidakis et al. 2002b	LHc	Qualquer	22,1%	ØSLF
Aldred et al. 2008	LHc	Qualquer	13,8%	ØSLF
Molot et al. 1994	LH	≥25%	19,6%	ØSLR
Este Trabalho	LHc	Qualquer	18,7%	ØSLD

^{*} Pacientes tratados entre 1974 a 1980 (antigos).

Legenda: SLF: Sobrevida Livre de Falhas; TFT: Tempo para Falha do Tratamento; SLR: Sobrevida Livre de Recidiva; SLD: Sobrevida Livre de Doença; NI: Não Informado

Igualmente à grande maioria das pesquisas já realizadas, (VESTLEV et al. 1992; ARMSTRONG et al. 1994; ENBLAD et al. 1997 e 1999; MURRAY et al. 1999; ENGEL et al. 2000; GLAVINA-DURDOV et al. 2001; FLAVELL et al. 2003; HERLING et al. 2003; KRUGMANN et al. 2003; CLAVIEZ et al. 2005; CHABAY et al. 2008; ALDRED et al. 2008), não encontramos relação entre a positividade do LMP-1 e a sobrevida livre de doença. Apenas alguns pesquisadores MURRAY et al. (1999), MONTALBÁN et al. (2000), NARESH et al. (2000), GLAVINA-DURDOV et al. (2001), e FLAVELL et al. (2003) encontraram que a presença do LMP-1/EBER está relacionada a um aumento na sobrevida livre de doença. MURRAY et al. (1999) incluiu, em sua pesquisa, os pacientes com LH não-clássico e somente aqueles em estadios avançados, encontrando um aumento na sobrevida livre de doença com um acompanhamento de 2 anos. Com um acompanhamento de 5 anos, esta relação desapareceu. FLAVELL et al. (2003) também incluiu os pacientes com LH nãoclássico e também somente aqueles em estadios avançados, encontrando um aumento da sobrevida livre de doença apenas para pacientes do sexo masculino. GLAVINA-DURDOV et al. (2001) também incluiu os pacientes com LH não-clássico e somente encontrou um aumento na sobrevida livre de doença naqueles pacientes ≤30 anos, ou ≤34 anos, ou em estadio clínico I ou IIA. MONTALBÁN et al. (2000) igualmente, incluiu, em sua pesquisa, os pacientes com LH não-clássico. NARESH et al. (2000) estudou pacientes com LHc. Contudo, ele padronizou o ponto de corte de positividade em maior que 10% das células H-RS, que é uma padronização diferente da utilizada neste trabalho. Estas variações na seleção dos pacientes e no ponto de corte utilizado podem ser responsáveis por uma alteração nos resultados estatísticos obtidos por estas pesquisas.

Tabela 35 - LMP-1/EBER & Sobrevida Livre de Doença.

Estudo	Paciente	Critério de positividade células H-RS	Percentagem LMP-1+/EBER+	Sobrevida Livre de Doença
Montalbán et al. 2000	LH	NI	53,6%	↑SLF
Naresh et al. 2000	LHc	>10%	78,2%	↑SLR
Glavina-Durdov et al. 2001	LH	NI	26,0%	ØSLD / ↑SLD*
Flavell et al. 2003	LH Avançado	Qualquer	28,6%	ØSLF / ↑SLF**
Murray et al. 1999	LH Avançado	NI	26,8%	ØSLF / ↑SLF***
Krugmann et al. 2003	LHc	NI	26,1%	ØSLF
Claviez et al. 2005	LH Pediátrico	NI	31,2%	ØSLF
Herling et al. 2003	LHc	Qualquer	21,5%	ØSLF
Chabay et al. 2008	LH Pediátrico	NI	51,7%	ØSLE
Enblad et al. 1997	LH	Qualquer	25,2%	ØSLD
Engel et al. 2000	LHc Pediátrico (EN/CM)	NI	68,1%	ØSLR
Enblad et al. 1999	LH	NI	27,4%	ØSLD
Armstrong et al. 1994	LH	Qualquer	35,6%	ØSLF
Aldred et al. 2008	LHc	Qualquer	40,7%	ØSLF
Vestlev et al. 1992	LH	NI	40,9%	ØSLP
Este Trabalho	LHc	Qualquer	42,5%	ØSLD

^{*} Se pacientes ≤30 anos ou ≤34 anos ou estadio clínico I ou IIA ** Sexo masculino

Legenda: SLF: Sobrevida Livre de Falhas; SLR: Sobrevida Livre de Recidiva; SLD: Sobrevida Livre de Doença; SLE: Sobrevida Livre de Evento; SLP: sobrevida Livre de Progressão; NI: Não Informado

^{***} Somente em 2 anos

Em nossa análise univariada, a presença do marcador p53 influenciou a sobrevida livre de doença de modo positivo, aumentando-a, contudo, isto não se confirmou na análise multivariada. Provavelmente por que tivemos um número muito pequeno de pacientes com p53 negativo (quatro pacientes). Nossos dados são coincidentes com o encontrado pela maioria dos pesquisadores XERRI et al. (1994), MONTALBÁN et al. (2000) e SUP et al. (2005). DINAND et al. (2008) encontrou um aumento na sobrevida livre de falhas, entretanto, ele analisou apenas o subgrupo pediátrico (<15 anos). SMOLEWSKI et al. (2000), contrariamente, encontrou uma diminuição da sobrevida livre de doença. Entretanto, ele padronizou o ponto de corte, para considerar o caso positivo, em >20% das células tumorais coradas e também incluiu os pacientes com LH não-clássico.

Tabela 36 - p53 & Sobrevida Livre de Doença.

Estudo	Pacientes	Critério de positividade	Percentagem	Sobrevida Livre
		células H-RS	p53+	de Doença
Dinand et al. 2008	LHc pediátrico	Qualquer	90,1%	↑SLF
Smolewski et al. 2000	LH	>20%	57,7%	↓SLD
Sup et al. 2005	LHc	≥10%	10,3%	ØSLF
Montalbán et al. 2000	LH	NI	NI	ØSLF
Xerri et al. 1994	LH	Qualquer	75,5%	ØSLD
Este Trabalho	LHc	Qualquer	96,0%	ØSLD

Legenda: SLF: Sobrevida Livre de Falhas; SLD: Sobrevida Livre de Doença; NI: Não Informado

Não encontramos relação prognóstica entre o marcador Bcl-2 e a sobrevida livre de doença. O mesmo foi encontrado por MONTALBÁN et al. (2000). Alguns pesquisadores (SMOLEWSKI et al. 2000; RASSIDAKIS et al. 2002a; SUP et al. 2005). encontraram que a positividade do Bcl-2 diminuiu a sobrevida livre de doença. Contudo, SMOLEWSKI et al. (2000) incluiu os pacientes com LH não-

clássico, não padronizou o tratamento inicial e usou, como ponto de corte, ≥10% das células tumorais positivas. SUP et al. (2005) também não padronizou o tratamento inicial dos pacientes e também usou, como ponto de corte, ≥10% das células tumorais positivas. RASSIDAKIS et al. (2002a) também não padronizou o tratamento inicial dos pacientes.

Tabela 37 - Bcl-2 & Sobrevida Livre de Doença.

Estudo	Pacientes	Critério de	Percentagem	Tempo Livre
		positividade	Bcl-2+	de Doença
		células H-RS		
Rassidakis et al. 2002a	LHc	Qualquer	61,2%	↓SLF
Sup et al. 2005	LHc	≥10%	26,2%	↓SLF
Smolewski et al. 2000	LH	≥10%	46,9%	↓SLD
Montalbán et al. 2000	LH	NI	59,1%	ØSLF
Este Trabalho	LHc	Qualquer	22,1%	ØSLD

Legenda: SLF: Sobrevida Livre de Falhas; SLD: Sobrevida Livre de Doença; NI: Não Informado

9 CONCLUSÃO

Dos marcadores imunohistoquímicos estudados, o CD15 foi o único que se apresentou como um fator independente para menor refratariedade.

Em nossa casuística, a recidiva do LHc foi um evento raro e de causa não identificada pelas variáveis estudadas. De uma forma geral, devido ao fato de o atual tratamento dos pacientes com LHc exibir sucesso na maioria dos pacientes, é difícil a identificação dos marcadores prognósticos para o estudo da recidiva do LHc.

A presença do p53 aumentou a sobrevida livre de doença e a sobrevida câncer específica, na análise univariada. Contudo, ela perdeu sua significância estatística na análise multivariada.

10 REFERÊNCIAS BIBLIOGRÁFICAS

Abreu ES. Doença de Hodgkin infanto-juvenil no Estado do Ceará e sua relação com o vírus de Epstein-Barr: parâmetros clínicos e análise morfológica, imunohistoquímica e por hibridização in situ. Fortaleza; 1996. [Dissertação de Mestrado-Universidade Federal do Ceará].

Abreu ES, Ferreira FVA, Rocha Filho FD et al. Doença de Hodgkin infanto-juvenil no Estado do Ceará e sua relação com o vírus de Epstein-Barr: parâmetros clínicos e análise morfológica, imunohistoquímica e por hibridização *in situ*. **J Bras Patol** 1997; 33:178-84.

Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. **Science** 1998; 281:1322-6.

Addis BJ, Isaacson PG. Large cell lymphoma of the mediastinum: a B-cell tumor of probable thymic origin. **Histopathology** 1986; 10:379-90.

Agnarsson BA, Kadin ME. The immunophenotype of Reed-Sternberg cells. A study of 50 cases of Hodgkin's disease using fixed frozen tissue. **Cancer** 1989; 63:2083-7.

Aldred V, Vassallo J, Froes M Campos AH, Augusto Soares F. CD20 expression by Hodgkin-Reed-Sternberg cells in classical Hodgkin lymphoma is related to reduced overall survival in young adult patients. **Leuk Lymphoma** 2008; 49:2198-202.

Alexander FE, Daniel CP, Armstrong AA, et al. Case clustering, Epstein-Barr virus Reed-Sternberg cell status and herpes virus serology in Hodgkin's disease: Results of a case control study. **Eur J Cancer** 1995; 31A:1479-86.

Almeida JMMF. Células dendríticas foliculares: avaliação imunofenotípica no linfoma de Hodgkin clássico subtipo esclerose nodular. Fortaleza; 2004. [Dissertação de Mestrado-Universidade Federal do Ceará].

Ambinder RF, Browning PJ, Lorenzana I, et al. Epstein-Barr virus and childhood Hodgkin's disease in Honduras and the United States. **Blood** 1993; 81:462-7.

Amini RM, Enblad G, Engström P, Christensson B, Glimelius B, Sundström C. Relapsed Hodgkin's lymphoma: immunostaining patterns in relation to survival. **Leuk Lymphoma** 2002; 43:1253-60.

Amundson SA, Myers TG, Fornace AJ Jr. Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. **Oncogene** 1998; 17:3287-99.

Anagnostopoulos I, Herbst H, Niedobitek G, Stein H. Demonstration of monoclonal Epstein-Barr virus genomes in Hodgkin's disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. **Blood** 1989; 74:810-6.

Anagnostopoulos I, Hansmann ML, Franssila K, et al. European task force on lymphoma project on lymphocyte predominance Hodgkin's disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin's disease with a nodular growth patter and abundant lymphocytes. **Blood** 2000; 96:1889-99.

Anagnostopoulos I, Isaacson PG, Stein H. Lynphocyte-rich classical Hodgkin lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al. **WHO classification of tumours of haematopoietic and lymphoid tissues.** Lyon: IARC; 2008. p.322-34. (IARC WHO Classification of Tumours, n° 2)

Armstrong AA, Alexander FE, Paes RP et al. Association of Epstein-Barr virus with pediatric Hodgkin's disease. **Am J Pathol** 1993; 142:1683-8.

Armstrong AA, Lennard A, Alexander FE, et al. Prognostic significance of Epstein-Barr virus association in Hodgkin's disease. **Eur J Cancer** 1994; 30A:1045-6.

Asano N, Oshiro A, Matsuo K, et al. Prognostic significance of T-cell or cytotoxic molecules phenotype in classical Hodgkin's lymphoma: a clinicopathologic study. **J Clin Oncol** 2006; 24:4626-32.

Ashton-Key M, Thorpe PA, Allen JP, Isaacson PG. Folicular Hodgkin's disease. **Am J Surg Pathol** 1995; 19:1294-9.

Audouin J, Diebold J, Nathwani B, et al. Epstein-Barr virus and Hodgkin's lymphoma in Cairo, Egypt. **J Hematop** 2010; 3:11-8.

Axdorph U, Porwit-MacDonald A, Sjöberg J, et al. Epstein-Barr virus expression in Hodgkin's disease in relation to patient characteristics, serum factors and blood lymphocyte function. **Br J Cancer** 1999; 81:1182-7.

Axdorph U, Sjöberg J, Grimfors G, Landgren O, Porwit-MacDonald A, Björkholm M. Biological markers may add to prediction of outcome achieved by the international prognostic score in Hodgkin's disease. **Ann Oncol** 2000; 11:1405-11.

Bai MC, Jiwa NM, Horstman A, et al. Decreased expression of cellular markers in Epstein-Barr virus positive Hodgkin's disease. **J Pathol** 1994; 174:49-55.

Banks PM. The pathology of Hodgkin's disease. **Semin Oncol** 1990; 17:683-95.

Banks PM. Pathology of malignant lymphomas. In: Lichtman M, Beutler E, Kaushansky K, Kipps T, Seligsohn U, Prchal J, editors. **Williams hematology.** 5^a ed. Philadelphia: McGraw Hill; 1995. p.1049-75.

Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kappa B-Rel A activation is required for proliferation and survival of Hodgkin's disease tumor cells. **J Clin Invest** 1997; 100:2961-9.

Barisik NO, Bozkurt S, Gumus M, et al. Expression and prognostic significance of cox-2 and p-53 in Hodgkin lymphomas: a retrospective study. **Diagn Pathol** 2010; 5:19.

Barros MH, Zalcberg IR, Hassan R. Prognostic impact of CD15 expression and proliferative index in the outcome of children with classical Hodgkin lymphoma. **Pediatr Blood Cancer** 2008; 50:428-9.

Berild D, Bendtzen K, Badsberg E. Diagnosis of Hodgkin's disease hampered by Epstein-Barr virus infection treated with acyclovir. **Scand J Haematol** 1984; 33:448-52.

Bishop PW, Harris M, Smith AP, Elsam KJ. Immunophenotypic study of lymphocyte predominance Hodgkin's disease. **Histopathology** 1991; 18:19-241.

Bittencourt AL, Mendonça N; Carvalho EG, Bittencourt ARL, Nunes CAS. Doença de Hodgkin infantil na Bahia, Brasil: avaliação de 43 casos. **J Pediatr** 1987; 62:187-91.

Bittencourt AL, Barbosa HS. Pediatric Hodgkin's disease in Bahia, Brazil. **Oncol Life Science Advances** 1992; 11:45-9.

Broecker Neto A, Lago S, Radke RC, Costa AJ. Doença de Hodgkin: estudo epidemiológico e clínico em uma população parcial no Rio Grande do Sul. **Rev Bras Cancerol** 1986; 32:245-50.

Brousset P. Recent advances in Hodgkin's disease. In: Congresso Brasileiro de Patologia. Curso curto CC11. Sociedade Brasileira de Patologia, Curitiba, 1999.

Burke JS. Hodgkin's disease: histopathology and differential diagnosis. In: Knowles DM. **Neoplastic Hematopathology.** Baltimore: Lippincott Williams and Wilkins; 1992. p.497-533.

Burroni D, Cintorino M, Leoncini L, Tosi P, Ceccarini C. Site-specific monoclonal antibodies against peanut agglutinin (PNA) from *Arachis hypogaea*: immunohistochemical study of tissue-cultured cells and of 27 cases of Hodgkin's disease. **Am J Pathol** 1988; 131:351-60.

[CDC] Centers for Disease Control and Prevention. **Cancer prevention and control**. 2007. Avaliable from: <URL:http://www.cdc.gov/cancer/> [2011 set 12]

Canioni D, Deau-Fischer B, Taupin P, et al. Prognostic significance of new immunohistochemical markers in refractory classical Hodgkin lymphoma: a study of 59 cases. **PLoS One** 2009; 4:e6341.

Chabay PA, Barros MH, Hassan R, et al. Pediatric Hodgkin lymphoma in 2 South American Series: A distinctive epidemiologic pattern and lack of association of Epstein-Barr virus with clinical outcome. **J Pediatr Hematol Oncol** 2008; 30:285-91.

Chan JK, Yip TT, Tsang WY, Lau WH, Wong CS, Ma VW. Detection of Epstein-Barr virus in Hodgkin's disease occurring in an Oriental population. **Hum Pathol** 1995; 26:314-8.

Chan JK. The new World Health Organization classification of lymphomas: the past, the present and the future. **Hematol Oncol** 2001; 19:129-50.

Chang KC, Khen NT, Jones D, Su IJ. Epstein-Barr virus is associated with all histological subtypes of Hodgkin lymphoma in Vietnamese children with special emphasis on the entity of lymphocyte predominance subtype. **Hum Pathol** 2005; 36:747-55.

Chang KC, Chen PC, Jones D, Su IJ. Changing patterns in the frequency of Hodgkin lymphoma subtypes and Epstein-Barr virus association in Taiwan. **Cancer Sci** 2008; 99:345-9.

Chaves E. Doença de Hodgkin em crianças (0-14 anos) – Estudo clínico-patológico de 18 casos. **Rev Bras Cirurgia** 1972; 62:25-35.

Chaves E. Hodgkin's disease in the first decade. Cancer 1973; 31:925-30.

Chen WG, Chen YY, Kamel OW, Koo CH, Weiss LM. p53 mutations in Hodgkin's disease. **Lab Invest** 1996; 75:519-27.

Chu PG, Chang KL, Arber DA, Weiss LM. Immunophenotyping of hematopoietic in neoplasms. **Semin Diagn Pathol** 2000; 17:236-56.

Clarke CA, Glaser SL, Dorfman RF, et al. Epstein-Barr virus and survival after Hodgkin disease in a population-based series of women. **Cancer** 2001; 91:1579-87.

Claviez A, Tiemann M, Peters J, Kreipe H, Schneppenheim R, Parwaresch R. The impact of EBV, proliferation rate, and Bcl-2 expression in Hodgkin's disease in childhood. **Ann Hematol** 1994; 68:61-6.

Claviez A, Tiemann M, Lüders H, et al. Impact of latent Epstein-Barr virus infection on outcome in children and adolescents with Hodgkin's lymphoma. **J Clin Oncol** 2005; 23:4048-56.

Costa PB. Doença de Hodgkin. In: Marinho HM, editor. **Hematologia.** São Paulo: Sarvier; 1984. p.179-88.

Cotran RS, Kumar V, Collins T. **Robbins - Patologia estrutural e funcional.** 7ª ed. Rio de Janeiro: Elsevier; 2005. Doenças de leucócitos, linfonodos, baço e timo, p.722-7.

de Mascarel I, Trojani M, Eghbali H, Coindre JM, Bonichon F. Prognostic value of phenotyping by Ber-H2, Leu-M1, EMA in Hodgkin's disease. **Arch Pathol Lab Med** 1990; 114:953-5.

de Mascarel I, Trojani M, Eghbali H, Coindre JM, Bonichon F. Prognostic value of phenotyping by Ber-H2, Leu-M1, EMA in Hodgkin's disease. **Arch Pathol Lab Med** 1990; 114:953-5.

DeVita VT Jr, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin's disease. **Ann Intern Med** 1970; 73:881-95.

Diehl V, Thomas RK, Re D. Part II: Hodgkin lymphoma – diagnosis and treatment. **Lancet Oncol** 2004; 5:19-26.

Dienstbier Z, Foltýnová V, Hermanská Z, et al. Prognostic factors in Hodgkin's disease. **Neoplasma** 1986; 33:731-5.

Dienstbier Z, Chytrý P, Hermanská Z, Melínová L, Pěnicka P, Maríková E. A multivariate analysis of prognostic factors in adult Hodgkin's disease. **Neoplasma** 1989; 36:447-56.

Dinand V, Arya LS. Epidemiology of childhood Hodgkin's disease: is it different in developing countries? **Indian Pediatr** 2006; 43:141-7.

Dinand V, Malik A, Unni R, Arya LS, Pandey RM, Dawar R. Proliferative index and CD15 expression in pediatric classical Hodgkin lymphoma. **Pediatr Blood Cancer** 2008; 50:280-3.

Dogan A, Burke JS, Goteri G, Stitson RN, Wotherspoon AC, Isaacson PG. Micronodular T-cell/histiocyte-rich large B-cell lymphoma of the spleen: histology, immunophenotype and differential diagnosis. **Am J Surg Pathol** 2003; 27:903-11.

Donnelly GB, Filippa D, Moskowitz CH, et al. Increased treatment failure in patients with CD 20 positive classic Hodgkin's disease. **Blood** 1999; 94:598.

Dorfman RF, Gatter KC, Pulford KA, Mason DY. An evaluation of the utility of anti-granulocyte and anti-leukocyte monoclonal antibodies in the diagnosis of Hodgkin's disease. **Am J Pathol** 1986; 123:508-19.

Elgui de Oliveira D, Bacchi MM, Abreu ES, Niero-Melo L, Bacchi CE. Hodgkin's disease in adult and juvenile groups from two different geographic regions in Brazil: characterization of clinicopathologic aspects and relationship with Epstein-Barr virus infection. **Am J Clin Pathol** 2002; 118:25-30.

Ellis PA, Hart DN, Colls BM, Nimmo JC, MacDonald JE, Angus HB. Hodgkin's cells express a novel pattern of adhesion molecules. **Clin Exp Immunol** 1992; 90:117-23.

Enblad G, Sundstron C, Glimerlius B. Immunohistochemical characteristics of Hodgkin and Reed-Sternberg cells in relation to age and clinical outcome. **Histopathology** 1993; 22:535-41.

Enblad G, Sandvej K, Lennette E, et al. Lack of correlation between EBV serology and presence of EBV in the Hodgkin and Reed-Sternberg cells of patients with Hodgkin's disease. **Int J Cancer** 1997; 72:394-7.

Enblad G, Sandvej K, Sundström C, Pallesen G, Glimelius B. Epstein-Barr virus distribution in Hodgkin's disease in an unselected Swedish population. **Acta Oncol** 1999; 38:425-9.

Engel M, Essop MF, Close P, Hartley P, Pallesen G, Sinclair-Smith C. Improved prognosis of Epstein-Barr virus associated childhood Hodgkin's lymphoma: Study of 47 South African cases. **J Clin Pathol** 2000; 53:182-6.

Fellbaum C, Hansmann ML, Niedermeyer H, et al. Influence of Epstein-Barr virus genomes on patient survival in Hodgkin's disease. **Am J Clin Pathol** 1992; 98:319-23.

Ferreira FVA, Menezes DB. Doença de Hodgkin – Interrelação linfócitos-"células-alvo", como índice morfológico do prognóstico. **Rev Med Univ Fed Ceará** 1977; 17:19-23.

Ferreira FVA, Oliveira EG, Alencar JEB. Doença de Hodgkin: peculiaridades estatísticas em Fortaleza, Ceará, Brasil. **Rev Med Univ Fed Ceará** 1977; 17:15-8.

Ferry JA, Linggood RM, Convery KM, Efird JT, Eliseo R, Harris NL. Hodgkin's disease, nodule sclerosis type. **Cancer** 1993; 71:457-63.

Finkbeiner JA, Craver LF, Diamond HD. Prognostic signs in Hodgkin's disease. **J Am Med Assoc** 1954; 156:472-7.

Flavell KJ, Billingham LJ, Biddulph JP, et al. The effect of Epstein-Barr virus status on outcome in age- and sex-defined subgroups of patients with advanced Hodgkin's disease. **Ann Oncol** 2003; 14:282-90.

Forni M, Hofman FM, Parker JW, Lukes RJ, Taylor CR. B and T lymphocytes in Hodgkin's disease. An immunohistochemical study utilizing heterologous and monoclonal antibodies. **Cancer** 1985; 55:728-37.

Frierson HF Jr, Innes DJ Jr. Sensitivity of anti-Leu-M1 as a marker in Hodgkin's disease. **Arch Pathol Lab Med** 1985; 109:1024-8.

Fu XH, Wang SS, Huang Y, et al. Prognostic significance of CD20 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma. **Chinese J Cancer** 2008; 27:450-6.

Gad El-Mawla N, El-Deeb BB, Abu-Gabal A, et al. Pediatric Hodgkin's disease in Egypt. **Cancer** 1983; 52:1129-31.

Garcia R, Hernández JM, Caballero MD, et al. Serum lactate dehydrogenase level as a prognostic factor in Hodgkin's disease. **Br J Cancer** 1993; 68:1227-31.

Garcia JF, Camacho FI, Morente M, et al. Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle check-points: analyses using tissue microarrays. **Blood** 2003; 101:681-9.

Gause A, Pohl C, Tschiersch A, et al. Clinical significance of Soluble CD30 antigen in Sera of patients with untreated Hodgkin's disease. **Blood** 1991; 77:1983-8.

Giesta RP, Rocha Filho FD, Ferreira FVA, Quixadá ATS, Heukelbach J, Giesta MAG. Influencia do CD 20 na refratariedade do linfoma de Hodgkin clássico ao tratamento inicial com o esquema ABVD, no Ceará, Brasil. **J Bras Patol Med Lab** 2009; 45:247-52.

Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin's disease: epidemiologic characteristics in international data. **Int J Cancer** 1997; 70:375-82.

Glavina-Durdov M, Jakic-Razumovic J, Capkun V, Murray P. Assessment of the prognostic impact of the Epstein-Barr virus-encoded latent membrane protein-1 expression in Hodgkin's disease. **Br J Cancer** 2001; 84:1227-34.

Gobbi PG, Cavalli P, Franzini B, Di Prisco U, Federico M, Bonacorsi G. Tonsillectomy: a prognostic factor in Hodgkin's disease? **Tumori** 1981; 67:425-30.

Gregory CD, Dive C, Henderson S, et al. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. **Nature** 1991; 349:612-4.

Gulley ML, Eagan PA, Quintanilla-Martinez L, et al. Epstein-Barr virus DNA is abundant and monoclonal in the Reed-Sternberg cells of Hodgkin's disease: association with mixed cellularity subtype and Hispanic American ethnicity. **Blood** 1994; 83:1595-602.

Gupta RK, Norton AJ, Thompson IW, Lister TA, Bodmer JG. P53 expression in Reed-Sternberg cells of Hodgkin's disease. **Br J Cancer** 1992; 66:649-52.

Gupta RK, Patel K, Bodmer WF, Bodmer JG. Mutation of P53 in primary biopsy material and cell lines from Hodgkin disease. **Proc Natl Acad Sci USA** 1993; 90:2817-21.

Gutensohn N, Cole P. Epidemiology of Hodgkin's disease. Semin Oncol 1980; 7:92.

Hall PA, D'Ardenne AJ. Value of CD15 immunostaining in diagnosing Hodgkin's disease. **J Clin Pathol** 1987; 40:1298-304.

Hall PA, D'Ardenne AJ, Stansfeld AG. Paraffin section immunohistochemistry. I. Non-Hodgkin's lymphoma. **Histopathology** 1988; 13:149-60.

Haluska FG, Brufsky AM, Canellos GP. The cellular biology of the Reed-Sternberg cell. **Blood** 1994; 84:1005-19.

Hancock BW, Dunsmore IR, Swan HT. Lymphopenia a bad prognostic factor in Hodgkin's disease. **Scand J Haematol** 1982; 29:193-9.

Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasm: a proposal from the international lymphoma study group. **Blood** 1994; 84:1361-92.

Hasenclever D, Diehl V, Armitage JO, et al. A prognostic score for advanced Hodgkin's disease. **N Engl J Med** 1998; 339:1506-14.

Hasenclever D. The disappearance of prognostic factors in Hodgkin's disease. **Ann Oncol** 2002; 13(Suppl 1):75-8.

Henderson S, Rowe M, Gregory C, et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. **Cell** 1991; 65:1107-15.

Herling M, Rassidakis GZ, Medeiros LJ, et al. Expression of Epstein-Barr virus latent membrane protein-1 in Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma: associations with presenting features, serum interleukin 10 levels, and clinical outcome. **Clin Cancer Res** 2003; 9:2114-20.

Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin's lymphoma after infectious mononucleosis. **N Engl J Med** 2003; 349:1324-32.

Hsu SM, Jaffe ES. Leu M1 and peanut agglutinin stain the neoplastic cells of Hodgkin's disease. **Am J Clin Pathol** 1984; 82:29-32.

Hudson MM, Donalson SS. Hodgkin's disease. **Ped Clin North Am** 1997; 4:897-913.

Hummel M, Anagnostopoulos I, Dallenbach F, Korbjuhn P, Dimmler C, Stein H. EBV infection patterns in Hodgkin's disease and normal lymphoid tissue: expression and cellular localization of EBV gene products. **Br J Haematol** 1992; 82:689-94.

Hummel M, Ziemann K, Lammert H, Pileri S, Sabattini E, Stein H. Hodgkin's disease with monoclonal and polyclonal populations of Reed-Sternberg cells. **N Engl J Med** 1995; 333:901-6.

Hyder DM, Schnitzer B. Utility of Leu M1 monoclonal antibody in the differential diagnosis of Hodgkin's disease. **Arch Pathol Lab Med** 1986; 110:416-9.

Isaacson PG, Schmid C, Pan L, Wotherspoon AC, Wright DH. Epstein-Barr virus latent membrane protein expression by Hodgkin and Reed-Sternberg-like cells in acute infectious mononucleosis. **J Pathol** 1992; 167:267-71.

Isaacson PG, Ashton-Key M. Phenotype of Hodgkin's and Reed-Sternberg cells. **Lancet** 1996; 346:481.

Jack AS, Cunningham D, Soukop M, Liddle CN, Lee FD. Use of Leu M1 and antiepithelial membrane antigen monoclonal antibodies for diagnosing Hodgkin's disease. **J Clin Pathol** 1986; 39:267-70.

Jackson H, Parker F. Hodgkin's Disease. N Engl J Med 1944; 231:35-44.

Jaffe ES, Harris NL, Stein H, Vardiman JW. **Pathology and genetics: tumors of hematopoietic and lymphoid tissues.** Lyon: IARC; 2001. (World Organization Classification of Tumors).

Jaffe ES. The 2008 WHO classification of lymphomas: implications for clinical practice and translation research. **Hematology Am Soc Hematol Educ Program** 2009:523-31.

Jarrett RF, Stark GL, White J, et al. Impact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: a population-based study. **Blood** 2005; 106:2444-51.

Kanavaros P, Sakalidou A, Tzardi M, et al. Frequent detection of Epstein-Barr virus (EBV), EBER transcripts and latent membrane protein-1 (LMP-1) in tumor cells in Hodgkin's disease arising in childhood. **Pathol Res Pract** 1994; 190:1026-30.

Kant JA, Hubbard SM, Longo DL, Simon RM, DeVita VT Jr, Jaffe ES. The pathologic and clinical heterogeneity of lymphocyte-depleted Hodgkin's disease. **J Clin Oncol** 1986; 4:284-94.

Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. **Proc Natl Acad Sci U S A** 1993; 90:9150-4.

Keegan TH, Glaser SL, Clarke CA, et al. Epstein-Barr virus as a marker of survival after Hodgkin's lymphoma: a population-based study. **J Clin Oncol** 2005; 23:7604-13.

Kim HK, Silver B, Li S, Neuberg D, Mauch P. Hodgkin's disease in elderly patients (≥60): clinical outcome and treatment strategies. **Int J Radiat Oncol Biol Phys** 2003; 56:556-60.

Kirchhoff LV, Evans AS, McClelland KE, Carvalho RP, Pannuti CS. A case-control study of Hodgkin's disease in Brazil. I. Epidemiologic aspects. **Am J Epidemiol** 1980; 112:595-608.

Kirsch DG, Kastan MB. Tumor-suppressor p53: implications for tumor development and prognosis. **J Clin Oncol** 1998; 16:3158-68.

Kloofs Antiquarian Booksellers. **Thomas Hodgkin**. Avaliable from: <URL:http://www.morbus-hodgkin.de/infoserv/tomhod.htm> [2011 set 12].

Kornstein MJ, Bonner H, Gee B, Cohen R, Brooks JJ. Leu M1 and S100 in Hodgkin's disease and non Hodgkin's lymphomas. **Am J Clin Pathol** 1986; 85:433-7.

Krugmann J, Tzankov A, Gschwendtner A, et al. Longer failure-free survival interval of Epstein-Barr virus-associated classical Hodgkin's lymphoma: A single-institution study. **Mod Pathol** 2003; 16:566-73.

Küpper M, Joos S, von Bonin F, et al. MDM2 gene amplification and lack of p53 point mutations in Hodgkin and Reed-Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies. **Br J Haematol** 2001; 112:768-75.

Kuppers R, Rajewsky K. The origin of Hodgkin and Reed/Sternberg cells in Hodgkin's disease. **Ann Rev Immunol** 1998; 16:471-93.

Lauritzen AF, Ralfkiaer E. Use of monoclonal antibodies for the typing of malignant lymphomas in routinely processed biopsy samples. **APMIS** 1991; 99:631-9.

Lauritzen AF, Møller PH, Nedergaard T, Guldberg P, Hou-Jensen K, Ralfkiaer E. Apoptosis-related genes and proteins in Hodgkin's disease. **APMIS** 1999; 107:636-44.

Leite LP. Estudo analítico da associação da doença de Hodgkin com o vírus de Epstein-Barr em uma região tropical de Fortaleza, Ceará - Brasil. Comparação com dados oriundos de pesquisas em regiões com distintos níveis de desenvolvimento social e econômico. Fortaleza; 1998. [Dissertação de Mestrado-Universidade Federal do Ceará].

Leoncini L, Del Vecchio MT, Kraft R, et al. Hodgkin's disease and CD30-positive anaplastic large cell lymphomas – a continuous spectrum of malignant disorders. A quantitative morphometric and immunohistologic study. **Am J Pathol** 1990; 137:1047-57.

Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. **Nature** 1991; 351:453-6.

Levine PH, Pallesen G, Ebbesen P, Harris N, Evans AS, Müeller N. Evaluation of Epstein-Barr virus antibody patterns and detection of viral markers in the biopsies of patients with Hodgkin's disease. **Int J Cancer** 1994; 59:48-50.

Levy A, Diomin V, Gopas J, Ariad S, Sacks M, Benharroch D. Hodgkin's lymphoma in the Bedouin of Southern Israel: epidemiological and clinical features. **Isr Med Assoc J** 2000; 2:501-3.

Levy LM. Hodgkin's disease in black Zimbabweans. A study of epidemiologic, histologic, and clinical features. **Cancer** 1988; 61:189-94.

Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staining of patients with Hodgkin's disease: Cotswolds Meeting. **J Clin Oncol** 1989; 7:1630-6.

Löeffler M, Pfreundschuh M, Hasenclever D, et al. Prognostic risk factors in advanced Hodgkin's lymphoma. Report of the German Hodgkin Study Group. **Blut** 1988; 56:273-81.

Löffler M, Mauch P, MacLennan K, Specht L, Henry-Amar M. The Second International Symposium on Hodgkin's Disease. Workshop I: Review on prognostic factors. **Ann Oncol** 1992; 3(Suppl 4):63-6.

Low SE, Horsman JM, Hancock H, Walters SJ, Hancock BW. Prognostic markers in malignant lymphoma: an analysis of 1,198 patients treated at a single centre. **Int J Oncol** 2001; 19:1203-9.

Lukes RJ, Graver LF, Hall TC, Rappaport H, Ruben P. Report of the nomenclature committee. **Cancer Res** 1966; 26:1311.

Machado JC, da Silveira Filho JF, Russo AD. Epidemiology of Hodgkin's disease in children. A study of 36 cases. **Mem Inst Butantan** 1971; 35:55-61.

Mack TM, Cozen W, Shibata DK, et al. Concordance for Hodgkin's disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. **N Engl J Med** 1995; 332:413-8.

MacMahon B. Epidemiological of Hodgkin's disease. Cancer Res 1966; 26:1189-200.

Macsween KF, Crawford DH. Epstein-Barr virus-recent advances. Lancet Infect Dis 2003; 3:131-40.

Maggio E, Stekelenburg E, Van den Berg A, Poppema S. TP53 gene mutations in Hodgkin lymphoma are infrequent and not associated with absence of Epstein-Barr virus. **Int J Cancer** 2001; 94:60-6.

Medeiros LJ, Weiss LM, Warnke RA, Dorfman RF. Utility of combing antigranulocyte with antileukocyte antibodies in differentiating Hodgkin's disease from non-Hodgkin's lymphoma. **Cancer** 1988; 62:2475-81.

Meis JM, Osborne BM, Butler JJ. A comparative marker study of large cell lymphoma, Hodgkin's disease, and true histiocytic lymphoma in paraffin-embedded tissue. **Am J Clin Pathol** 1986; 86:591-9.

Menestrina F, Chilosi M, Scarpa A. Nodular lymphocyte predominant Hodgkin's disease and anaplastic large-cell (CD 30+) lymphoma: distinct entitie or nonspecific patterns? **Semin Diagn Pathol** 1995; 12:256-69.

Milner J. Structures and functions of the tumor suppressor p53. **Pathol Biol (Paris)** 1997; 45:797-803.

Ministério da Saúde. Instituto Nacional do Cancer. **Câncer no Brasil: registro de base populacional**. 2000. Disponível em: <URL:http://www.inca.gov.br/cancernobrasil/2010> [2011 set 12]

Ministério da Saúde. Instituto Nacional do Cancer. Estimativa/2010 incidência de câncer no Brasil. Rio de Janeiro: INCA, 2009.

Ministério da Saúde. Instituto Nacional de Câncer. **Linfoma de Hodgkin**. Disponível em: <URL:http://www.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/linfoma_hodgkin> [2011 dez 20].

Molot RJ, Mendenhall NP, Barré DM, Braylan RC. The clinical relevance of L26, a B-cell-specific antibody, in Hodgkin's disease. **Am J Clin Oncol** 1994; 17:185-8.

Montalbán C, Abraira V, Morente M, et al. Epstein-Barr virus-latent membrane protein 1 expression has a favorable influence in the outcome of patients with Hodgkin's disease treated with chemotherapy. **Leuk Lymphoma** 2000; 39:563-72.

Montalbán C, García JF, Abraira V, et al. Influence of biologic markers on the outcome of Hodgkin's lymphoma: a study by the Spanish Hodgkin's lymphoma Study Group. **J Clin Oncol** 2004; 22:1664-73.

Montesinos-Rongen M, Roers A, Küppers R, Rajewsky K, Hansmann ML. Mutation of the p53 gene is not a typical feature of Hodgkin and Reed-Sternberg cells in Hodgkin's disease. **Blood** 1999; 94:1755-60.

Morente MM, Piris MA, Abraira V, et al. Adverse clinical outcome in Hodgkin's disease is associated with loss of retinoblastoma protein expression, high Ki67 proliferation index, and absence of Epstein-Barr virus-latent membrane protein 1 expression. **Blood** 1997; 90:2429-36.

Mueller N, Evans A, Harris NL, et al. Hodgkin's disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. **N Engl J Med** 1989; 320:689-95.

Muller CP, Trilling B, Steinke B. The prognostic significance of total serum cholesterol in patients with Hodgkin's disease. **Cancer** 1992; 69:1042-6.

Murad AM. Abordagem terapêutica da doença de Hodgkin. In: Colégio Brasileiro de Hematologia organizador. **Temas de hematologia – Programa Nacional do CNCBH.** Belo Horizonte: Imprensa Universitária; 1997. p.180-5

Murray PG, Billingham LJ, Hassan HT, et al. Effect of Epstein-Barr virus infection on response to chemotherapy and survival in Hodgkin's disease. **Blood** 1999; 94:442-7.

Myskow MW, Krajewski AS. Immunoreactivity of Reed-Sternberg cells in paraffin and frozen section. **J Clin Pathol** 1986; 39:1043-56.

[NLM] National Library of Medicine. **Dr Dorothy Reed Mendenhall**. Available from: <URL:http://www.nlm.nih.gov/exhibition/changingthefaceofmedicine /physicians/biography 221.html> [2006 sep 05].

[NCI] National Cancer Institute. National Institutes of Health. Surveillance, Epidemiology, and End Results (SEER). **Estimated new cancer cases and deaths for 2009**. Avaliable from: <URL:http://seer.cancer.gov/csr/1975_2006/results_single /sect_01_table.01.pdf> [2011 set 12]

Nadali G, Vinante F, Ambrosetti A, et al. Serum levels of soluble CD30 are elevated in the majority of untreated patients with Hodgkin's disease and correlate with clinical features and prognosis. **J Clin Oncol** 1994; 12:793-7.

Naresh KN, O'Conor GT, Soman CS, et al. A study of p53 protein, proliferating cell nuclear antigen, and p21 in Hodgkin's disease at presentation and relapse. **Hum Pathol** 1997; 28:549-55.

Naresh KN, Johnson J, Srinivas V, et al. Epstein-Barr virus association in classical Hodgkin's disease provides survival advantage to patients and correlates with higher expression of proliferation markers in Reed-Sternberg cells. **Ann Oncol** 2000; 11:91-6.

Neiman RS, Rosen PJ, Lukes RJ. Lymphocyte-depletion Hodgkin's disease. A clinicopathological entity. **N Engl J Med** 1973; 288:751-5.

Neidobitek G, Rowlands DC, Young LS, et al. Overexpression of p53 in Hodgkin's disease: lack of correlation with Epstein-Barr virus infection. **J Pathol** 1993; 169:207-12.

Norberg B, Dige U, Roos G, Johansson H, Lenner P. Hodgkin's disease in Northern Sweden 1971-1981. II. A retrospective analysis of prognostic factors. **Acta Oncol** 1991; 30:597-601.

Norton AJ, Isaacson PJ. An immunocytochemical study of T cell lymphoma using monoclonal and polyclonal antibody effective in routinely wax embedded tissue. **Histopathology** 1986; 10:1243-60.

O'Grady J, Stewart S, Elton RA, Krajewski AS. Epstein-Barr virus in Hodgkin's disease and site of origin of tumour. **Lancet** 1994; 343:265-6.

Ohsawa M, Fukushima H, Ikura Y, et al. Expression of cyclooxygenase-2 in Hodgkin's lymphoma: its role in cell proliferation and angiogenesis. **Leuk Lymphoma** 2006; 9:1863-71.

Oliveira HP. **Hematologia clínica.** Rio de Janeiro: Atheneu; 1990. Os linfomas: doença de Hodgkin - linfomas linfocíticos e histiocíticos; p.377-96.

Patkar N, Mehta J, Kulkarni B, Pande R, Advani S, Borges A. Immunoprofile of Hodgkin's lymphoma in India. **Indian J Cancer** 2008; 45:59-63.

Patrício MB, De Sousa JV. Hodgkin's disease in children: seventeen years experience at the Instituto Português de Oncologia de Francisco Gentil. **Cancer** 1981; 48:1550-6.

Petrella T, Michiels JF, Michiels R, et al. CD 15 antigen in Hodgkin's disease. **Pathol Res Pract** 1989; 185:886-90.

Pinheiro GS, Silva MR, Rodrigues CA, Kerbauy J, de Oliveira JS. Proliferating cell nuclear antigen (PCNA), p53 and MDM2 expression in Hodgkin's disease. **São Paulo Med J** 2007; 125:77-84.

Pinkus GS, Thomas P, Said JW. Leu-M1 – a marker for Reed-Sternberg cells in Hodgkin's disease. An immunoperoxidase study of paraffin-embedded tissues. **Am J Pathol** 1985; 119:244-52.

Pinto MT. Estudo comparativo da associação do vírus de Epstein-Barr com o linfoma de Hodgkin clássico em adulto. Estudo imuno-histoquímico e por hibridização in situ de casos do Ceará (Brasil) e da França. Fortaleza; 2003. [Dissertação de Mestrado-Universidade Federal do Ceará].

Pinto MT, Ferreira FV, Pitombeira MS, et al. Analysis of the association between Epstein-Barr virus and classic Hodgkin's lymphoma in adults patients from Ceará (Brazil) by immunohistochemistry and in situ hibridization. **J Bras Patol Med Lab** 2006; 42:201-5.

Pitombeira MS. **Doença de Hodgkin: análise de uma experiência**. Fortaleza; 1980. [Tese de Doutorado-Universidade Federal do Ceará].

Pitombeira MS, Martins JMC, Ferreira FVA, Ribeiro RA, Costa CMBE. Doença de Hodgkin na infância e na adolescência. **Rev Hosp Clín Fac Med Univ São Paulo** 1987; 42:253-9.

Poppema S, van Imhoff G, Torensma R, Smit J. Lymphadenopathy morphologically consistent with Hodgkin's disease associated with Epstein-Barr virus infection. **Am J Clin Pathol** 1985; 84:385-90.

Poppema S. Lymphocyte predominance Hodgkin's disease. **Semin Diagn Pathol** 1992; 9:257-64.

Portlock CS, Donnelly GB, Qin J, et al. Adverse prognostic significance of CD20 positive Reed-Sternberg cells in classical Hodgkin's disease. **Br J Haematol** 2004; 125:701-8.

Quintanilla-Martinez L, Gamboa-Domíquez A, Gamez-Ledesma I, Angeles-Angeles A, Mohar A. Association of Epstein-Barr virus latent membrane protein and Hodgkin's disease in Mexico. **Mod Pathol** 1995; 8:675-9.

Rapaport SI. **Hematologia.** 2ª ed. São Paulo: Roca; 1990. Doença de Hodgkin; 264-74.

Rassidakis GZ, Medeiros LJ, Vassilakopoulos TP, et al. BCL-2 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease predicts a poorer prognosis in patients treated with ABVD or equivalent regimens. **Blood** 2002a; 100:3935-41.

Rassidakis GZ, Medeiros LJ, Viviani S, et al. CD20 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin's disease: Associations with presenting features and clinical outcome. **J Clin Oncol** 2002b; 20:1278-87.

Ree HJ, Neiman RS, Martins AW, Dallenbach F, Stein H. Paraffin section markers of Reed-Sternberg cells. A comparative study of peanut agglutinin, Leu-M1, LN2, and Ber H2. **Cancer** 1989; 63:2030-6.

Reyes F. Maladie de Hodgkin. Encycl Med Chir 1990; 2:13016A1-13016A17.

Rodrigues NR, Rowan A, Smith ME, et al. p53 mutations in colorectal cancer. **Proc Natl Acad Sci U S A** 1990; 87:7555-9.

Said JW. The immunohistochemistry of Hodgkin's disease. **Semin Diagn Pathol** 1992; 9:265-71.

Sarker AB, Akagi T, Jeon HJ, et al. Bauhinia purpurea – a new paraffin section marker for Reed-Sternberg cells of Hodgkin's disease: a comparison with Leu-M1 (CD15), LN2 (CD74), peanut agglutinin, and Ber-H2 (CD30). **Am J Pathol** 1992; 141:19-23.

Schmid C, Pan L, Diss T, Isaacson PG. Expression of B-cell antigen by Hodgkin's disease and Reed-Sternberg cells. **Am J Pathol** 1991; 139:701-7.

Sheibani K, Battifora H, Burke JS, Rappaport H. Leu-M1 antigen in human neoplasms an immunohistologic study of 400 cases. **Am J Surg Pathol** 1986; 10:227-36.

Smolewski P, Robak T, Krykowski E, et al. Prognostic factors in Hodgkin's disease: multivariate analysis of 327 patients from a single institution. **Clin Cancer Res** 2000; 6:1150-60.

Soares FA, Vassalo J, Paes RP, Teresa Cristina Bortolheiro TC. Sistema hemolinfopoético. In: Brasileiro Filho GB, editor. **Bogliolo – patologia**. 6^a ed. Rio de Janeiro: Guanabara Koogan; 2000. p.841-94.

Specht L, Nissen NI. Prognostic factors in Hodgkin's disease stage IV. Eur J Haematol 1988; 41:359-67.

Specht L, Nissen NI. Hodgkin's disease and age. Eur J Haematol 1989; 43:127-35.

Spector N, Costa MA, Pulcheri W, et al. C-MOPP/ABV yields good results in a public hospital population with Hodgkin disease in Brazil. **Cancer** 1993; 71:2823-7.

Stark GL, Wood KM, Jack F, et al. Hodgkin's disease in the elderly: a population-based study. **Br J Haematol** 2002; 119:432-40.

Steele RJ, Thompson AM, Hall PA, Lane DP. The p53 tumour suppressor gene. **Br J Surg** 1998; 85:1460-7.

Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin's disease associate antigen Kil in reactive and neoplastic tissue: evidence that Reed Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. **Blood** 1985; 66:848-58.

Stein H. Hodgkin's disease *in* proposed world health organization classification of neoplastic disease of hematopoietic and lymphoid tissues. **Am J Surg Pathol** 1997; 1:119-21.

Strauchen JA, Dimitriu-Bona A. Immunopathology of Hodgkin's disease. Characterization of Reed-Sternberg cells with monoclonal antibodies. **Am J Pathol** 1986; 123:293-300.

Sundeen J, Lipford E, Uppenkamp M, et al. Rearranged antigen receptor genes in Hodgkin's disease. **Blood** 1987; 70:96-103.

Sup SJ, Alemañy CA, Pohlman B, et al. Expression of bcl-2 in Classical Hodgkin's lymphoma: An independent predictor of poor outcome. **J Clin Oncol** 2005; 23:3773-9.

Swerdlow SH, Wrigth SA. The spectrum of Leu M1 staining in lymphoid and hematopoietic proliferations. **Am J Clin Pathol** 1986; 85:283-8.

Tamaru J, Mikata A, Azuma K, Takagi T. Reciprocal/dichotomic expression of vimentin and B cell differentiation antigens in Reed-Sternberg's cells. **Virchows Archiv A Pathol Anat Histopathol** 1990; 416:213-20.

Thomas RK, Re D, Wolf J, Diehl V. Hodgkin's lymphoma – molecular biology of Hodgkin and Reed-Sternberg cells. **Lancet Oncol** 2004; 5:11-8.

Thümper LH, Brady G, Bagg A, et al. Single-cell analysis of Hodgkin and Reed-Sternberg cells: molecular heterogeneity of gene expression and p53 mutations. **Blood** 1993; 81:3097-115.

Touhami H, Sotto JJ, Sotto MF, et al. Prognostic value of the epithelial membrane antigen (EMA) in the case of Hodgkin's disease. **Neoplasma** 1991; 38:433-7.

Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome break-point of neoplastic B cells with the t (14;18) chromosome translocation. **Science** 1984; 226:1097-9.

Tzankov A, Zimpfer A, Pehrs AC, et al. Expression of B-cell markers in classical Hodgkin lymphoma: a tissue microarray analysis of 330 cases. **Mod Pathol** 2003a; 16:1141-7.

Tzankov A, Krugmann J, Fend F, Fischhofer M, Greil R, Dirnhofer S. Prognostic significance of CD20 expression in classical Hodgkin lymphoma: A clinicopathological study of 119 cases. **Clin Cancer Res** 2003b; 9:1381-6.

Ultmann JE, Moran EM. Clinical course and complications in Hodgkin's disease. **Arch Intern Med** 1973; 131:332-53.

University of Wisconsin-Madison. School of Human Ecology. **Mendenhall, Dorothy Reed (1874-1964)**. Available from: <URL:http://www.sohe.wisc.edu/depts/history/bios/mendenhall.htm> [2011 set 12].

Vassalo J, Metze K, Traina F, de Souza CA, Lorand-Metze I. Expression of Epstein-Barr virus in classical Hodgkin's lymphomas in Brazilian adult patients. **Haematologica** 2001; 86:1227-8.

Vassalo J, Metze K, Traina F, de Souza CA, Lorand-Metze I. Further remarks on the expression of CD20 in classical Hodgkin's lymphomas. **Haematologica** 2002; 3:ELT17.

Vassalo J, Metze K, Traina F, de Souza CA, Lorand-Metze I. The prognostic relevance of apoptosis-related proteins in classical Hodgkin's lymphomas. **Leuk Lymphoma** 2003; 44:483-8.

Vestlev PM, Pallesen G, Sandvej K, Hamilton-Dutoit SJ, Bendtzen SM. Prognosis of Hodgkin's disease is not influenced by Epstein-Barr virus latent membrane protein. **Int J Cancer** 1992; 50:670-1.

Von Wasielewski R, Mengel M, Fischer R, et al. Classical Hodgkin's disease. Clinical impact of the immunophenotype. **Am J Pathol** 1997a; 151:1123-30.

Von Wasielewski R, Werner M, Fischer R, et al. Lymphocyte-predominant Hodgkin's disease. An immunohistochemical analysis of 208 reviewed Hodgkin's disease cases from the German Hodgkin Study Group. **Am J Pathol** 1997b; 150:793-803.

Wang J, Taylor CR. Apoptosis and cell cycle-related genes and proteins in classical Hodgkin lymphoma. **Appl Immunohistochem Mol Morphol** 2003; 3:206-13.

Wang S, Rowe M, Lundgren E. Expression of the Epstein-Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines. **Cancer Res** 1996; 56:4610-3.

Weinreb M, Day PJ, Murray PG, et al. Epstein-Barr virus (EBV) and Hodgkin's disease in children: incidence of EBV latent membrane protein in malignant cells. **J Pathol** 1992; 168:365-9.

Weinreb M, Day PJ, Niggli F, et al. The consistent association between Epstein-Barr virus and Hodgkin's disease in children in Kenya. **Blood** 1996; 87:3828-36.

Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin's disease. **Am J Pathol** 1987; 129:86-91.

Werner M, Georgii A, Bernhards J, Hübner K, Schwarze EW, Fischer R. Characterization of giant cells in Hodgkin's lymphomas by immunohistochemistry applies to randomly collected diagnostic biopsies from the German Hodgkin trial. **Hematol Oncol** 1990; 8:241-50.

Wieczorek R, Buck D, Bindl J, Knowles DM. Monoclonal antibody Leu-22 (L60) permits the demonstration of some neoplastic T cells in routinely fixed and paraffinembedded tissue sections. **Hum Pathol** 1988; 19:1434-43.

Xerri L, Bouabdallah R, Camerlo J, Hassoun J. Expression of the p53 gene in Hodgkin's disease: dissociation between immunohistochemistry and clinicopathological data. **Hum Pathol** 1994; 25:449-54.

Xerri L, Parc P, Bouabdallah R, Camerlo J, Hassoun J. PCR-mismatch analysis of p53 gene mutation in Hodgkin's disease. **J Pathol** 1995; 175:189-94.

Yung L, Linch D. Hodgkin's lymphoma. Lancet 2003; 361:943-51.

Zarate-Osorno A, Roman LN, Kingma DW, Meneses-Garcia A, Jaffe ES. Hodgkin's disease in Mexico: prevalence of Epstein-Barr virus sequences and correlations with histologic subtype. **Cancer** 1995; 75:1360-6.

Zhao P, Lu Y, Liu L, Zhong M. Aberrant expression of ID2 protein and its correlation with EBV-LMP1 and P16(INK4A) in classical Hodgkin lymphoma in China. **BMC Cancer** 2008; 8:379.

Zukerberg LR, Collins AB, Ferry JA, Harris NL. Coexpression of CD 15 and CD 20 by Reed-Sternberg cells in Hodgkin's disease. **Am J Pathol** 1991; 139:475-83.